
A

urate Multiple-Pre
ision Gauss-LegendreQuadrature
O
tober 2006Abstra
tNumeri
al integration is an operation that is frequently available in multiplepre
ision numeri
al software pa
kages. The di�erent quadrature s
hemes used are
onsidered well studied but the rounding errors that result from the 
omputationare often negle
ted, and the a
tual a

ura
y of the results are therefore seldomrigorously proven.We propose an implementation of the Gauss-Legendre quadrature s
heme withbounded error: given a bound on the derivatives of a fun
tion we are able to 
om-pute an interval 
ontaining the true value of the integral, in arbitrary pre
ision. Theerror analysis is given as well as experimental error measurements and timings, anda 
omplete quadrature example.Keywords: numeri
al integration, error bound, Gauss-Legendre, multiple pre
i-sion.1 Introdu
tionNumeri
al integration is readily available in most multiple pre
ision numeri
al 
om-putation software (e.g. Pari/GP, MuPAD, Mathemati
a, Maple, . . . ). In thosesystems the pre
ision 
an usually be tuned by the user for ea
h 
omputation (it isgenerally understood as the �working pre
ision� but it may also be the number ofdigits displayed, when these two values di�er). It is however not ne
essarily 
learhow many, if any, of the displayed digits are 
orre
t. As a 
on
rete example we askMaple 10 the value of I =

∫ 42
17 e−x2

log xdx with the default pre
ision of 10 digits:> evalf(Int(exp(-x^2)*ln(x), x=17..42));-1260.2604007480 10We may want to ask for a se
ond value with a greater pre
ision of 20 digits and wewould get v2 = 0.34288028340847034512 · 10−126 whi
h has no 
ommon digit withthe previous value v1 = 0.2604007480 · 10−126. As we will see later in
reasing thepre
ision did in fa
t worsen the result.This experiment is a blunt reminder of the la
k of 
lear semanti
s for �oating-point 
omputations beyond the basi
 operations 
overed by the IEEE 754 stan-dard [5℄. As soon as 
omputations are 
omposed or trans
endental fun
tions like1



the sine fun
tion are used nothing is guaranteed by the IEEE 754 standard, andmultiple-pre
ision arithmeti
s is not 
overed either. This is however not an ex
useto rely only on heuristi
s to 
ompute a

urately, and it is still possible to obtainguaranteed results.Several approa
hes were made to over
ome these short
omings when 
omputingintegrals. One 
an mention the use of adaptive quadrature fun
tions with an au-tomati
 adjustment of the integration step to ea
h subinterval (in MuPAD [8℄), ordynami
 error 
ontrol (of simple or multiple integrals [1, 6℄). However well thesete
hniques may work in pra
ti
e, they rely on heuristi
s to provide an a

urateanswer to an integration problem.Our work di�ers from these approa
hes in that we seek to give a proven bound onthe error that takes into a

ount all sour
es of errors, in
luding the rounding errors.What we 
ompute is in fa
t an interval 
ontaining the result of the integral, andwith a proper 
hoi
e of parameters one 
an use our algorithm to in
rease arbitrarilythe pre
ision on the result.This paper is organized as follows. We �rst re
all brie�y the Gauss-Legendreintegration from a mathemati
al point of view, as well as some de�nitions andproperties of �oating-point arithmeti
s. In Se
tion 3 we will des
ribe the algorithmsused to 
ompute the Legendre polynomials and the 
oe�
ients of the method, whi
hdo not depend on the fun
tion to integrate and 
an therefore be pre
omputed forseveral fun
tions.We follow with our main result in Se
tion 4: our quadrature algorithm (Algo-rithm 2) along with its error analysis and an error bound summarized in Theorem 3.We give a 
omplete example of use of our algorithm in Se
tion 5.2 Reminders2.1 Gauss-Legendre RuleWe give a des
ription of the Gauss-Legendre quadrature method. It is a member ofthe Gaussian family of quadrature methods whi
h is more generally studied in [2℄.In this paper, f : [a, b]→ R is the C∞ fun
tion we want to integrate on a �nitedomain [a, b] and n is the number of points of the Gauss-Legendre method. Let
I =

∫ b

a

f(x)dxbe the exa
t value of the integral. We de�ne the inner produ
t of f and g on [a, b]for the admissible weight fun
tion w as
< f, g >=

∫ b

a

w(x)f(x)g(x)dx.This leads to the de�nition of a sequen
e of orthogonal polynomials (pi)i≥0 su
hthat:
∀i ∈ N,deg(pi) = i

∀(i, j) ∈ N2, < pi, pj >= δi,jwhere δi,j is Krone
ker's delta. For �xed n > 0, pn has n distin
t roots in (a, b)whi
h we name x0 < x1 < . . . < xn−1. The Gauss quadrature method asso
iated2



to the weight fun
tion w on [a, b] is the interpolatory method at evaluation points
(xi)0≤i<n su
h that

∫ b

a

w(x)p(x)dx =
n−1∑

i=0

wip(xi)holds for every polynomial p of degree up to n − 1 (this is enough to de�ne theweights wi although the method will be shown to integrate a

urately polynomialsof degree up to 2n− 1).The Gauss-Legendre quadrature method is the Gauss method for the weightfun
tion w = 1. Additionally the Legendre polynomials (Pn)n≥0 are usually de�nedon [−1, 1] and normalized su
h that Pn(1) = 1 and we will follow this 
ustom here.2.2 Legendre PolynomialsIn the rest of this paper Pn is the Legendre polynomial of degree n de�ned on [−1, 1]as usual. The quadrature method on [a, b] is derived from the quadrature method on
[−1, 1] from a shifting and s
aling in the polynomial. If we name (Vn) the updatedfamily of polynomials on [a, b] we have the simple formulas

Vn(u) = Pn

(
2u− (b + a)

b− a

)
and Pn(x) = Vn

(
a + b + x(b− a)

2

)
.We will mostly fo
us on [−1, 1] but the results will be given for the integrationinterval [a, b], with the details of the translation omitted.We denote by x′

0 < x′
1 < . . . < x′

n−1 the roots of Pn on [−1, 1] and use thenotation x0 < x1 < . . . < xn−1 for the translated roots on [a, b].Like other orthogonal polynomial sequen
es, the polynomials (Pn)n≥0 satisfy are
urren
e relationship:





P0(X) = 1
P1(X) = X

(n + 1)Pn+1(X) = (2n + 1)XPn(X)− nPn−1(X).
(1)From (1) we dedu
e that Pn has only monomials of degree the parity of n and hasrational 
oe�
ients. We re
all Rodrigues' representation:

Pn =
1

2nn!

dn

dxn
((x2 − 1)n)whi
h shows that we 
an use 2n as 
ommon denominator for the polynomial's 
oef-�
ients. Thus Pn 
an be written

Pn(X) =

{
2−nQn(X2) if n is even

2−nXQn(X2) otherwise.The problem of 
omputing Pn is redu
ed to the one of 
omputing Qn, whi
h hasinteger 
oe�
ients. The pro
edure is detailed in Algorithm 1.2.3 Mathemati
al errorIn this se
tion we give the bound on the mathemati
al error made with the Gauss-Legendre quadrature method. A generi
 proof for any weight fun
tion w 
an befound in [2℄. The proofs 
an be found in Appendix A.3



Algorithm 1 Computation of the Legendre PolynomialsInput: n ≥ 2.Output: Qn.1: Q0 ← 12: Q1 ← 23: p← 0 ⊲ holds the parity of the polynomial 
urrently 
omputed4: for i← 2 to n do5: Qp ← −4(i− 1)Qp + 2(2i− 1)X1−pQ1−p6: Qp ← 1
i
Qp ⊲ exa
t integer divisions7: p← 1− p8: end for9: return Q1−pTheorem 1. The Gauss-Legendre method on [a, b] with n points is exa
t for poly-nomials of degree ≤ 2n− 1.Theorem 2. Let M2n be a bound of |f (2n)| on [a, b], then the error of the Gauss-Legendre integration of f on [a, b] with in�nite pre
ision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.We will use in Se
tion 5 the 
omposition of the Gauss-Legendre quadraturemethod: for an order of 
omposition m and an integration domain [a, b] the 
om-posed Gauss-Legendre method is the appli
ation of the Gauss-Legendre method onea
h m intervals {[a, a + b−a

m
], [a + b−a

m
, a + 2 b−a

m
], . . . , [b− b−a

m
, b]}. The error of the
omposed method on [a, b] with in�nite pre
ision is therefore bounded by

(b− a)2n+1(n!)4

m2n(2n + 1)[(2n)!]3
M2n.2.4 Floating-point Arithmeti
sFor the error analysis of Algorithm 2, we need a few useful lemmas 
on
erning the�ulp 
al
ulus�, as well as some de�nitions. The �oating-point numbers are repre-sented with radix 2 (this 
ould be generalized for any radix but radix 2 is simplerand is natural on 
omputers). For this se
tion, p is the working pre
ision, and we as-sume all �oating-point numbers are normalized, whi
h means in our notations thatthe exponent range is unbounded. We denote by ◦(x) the �oating-point numberrounded to nearest in pre
ision p of a given real value x.De�nition 1 (Exponent, Unit in the last pla
e). For a non-zero real number x wede�ne E(x) := 1+⌊log2 |x|⌋, su
h that 2E(x)−1 ≤ |x| < 2E(x), and ulp(x) := 2E(x)−p.For a real x 6= 0 and a working pre
ision p we always have 2p−1ulp(x) ≤ |x| <

2pulp(x). If x is a �oating-point number, then ulp(x) is the weight of the leastsigni�
ant bit � zero or not � in the p-bit mantissa of x. For all real x, ulp(x) isalways greater than zero by de�nition.Lemma 1. If c 6= 0 and x 6= 0 then c · ulp(x) < 2 · ulp(cx).4



Lemma 2. Assuming no under�ow o

urs then in all rounding modes for a nonzero real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the rounding of x in the
hosen mode with an unbounded exponent range.Lemma 3. Let x a non-zero real and ◦(x) its rounding to nearest on p bits. Then
|x| ≤ (1 + 2−p)| ◦ (x)|.Lemma 4. Let a and b be two non-zero �oating-point numbers of the same signand pre
ision p then in all rounding modes

ulp(a) + ulp(b) ≤ 3

2
ulp(◦(a + b)).Lemma 5. For x and y real numbers and using rounding to nearest in pre
ision pwe have

| ◦ (◦(x) · ◦(y)) − xy| ≤ 5

2
ulp(◦(◦(x) · ◦(y))).3 Pre-
omputationsIn the integration algorithm the evaluation points and the weights of the method donot depend on the fun
tion to integrate and their 
omputation 
an thus be sharedamong several exe
utions of the algorithm. We will now explain how this quantitiesare 
omputed.3.1 Evaluation pointsComputing the roots (x′

i)0≤i<n of Pn redu
es to the 
omputation of the roots of Qn.Let m = ⌊n2 ⌋ and u0 < u1 < . . . < um−1 be the roots of Qn, we have:
{
x′

0, x
′
1, . . . , x

′
n−1

}
=

{ {
±√u0, . . . ,±

√
um−1

}
if n is even,{

±√u0, . . . ,±
√

um−1,
}
∪ {0} otherwise.The pro
ess of 
omputing the roots of Qn involves two steps:1. root isolation, that is �nding m intervals that 
ontain exa
tly one positive rootof Qn ea
h,2. root re�nement.The root isolation is made using Uspensky's algorithm as des
ribed in [10℄. Theinput of the algorithm is Qn(x), and the output is a sequen
e of m intervals of theform ci

2li
where ci and li are integers and su
h that [ ci

2li
, ci+1

2li
] 
ontains exa
tly oneroot of Qn, namely ui. At this step, log2(ci) bits of ui are known.We use the interval Newton iteration des
ribed in [9℄ for the root re�nement.Sin
e this method 
omputes ea
h root in interval arithmeti
s, it is 
omputable toarbitrary pre
ision with a known bound on the error.We denote by x̂ the value a
tually 
omputed (i.e., with all rounding errors) fora given �exa
t� value x, as would be 
omputed with an in�nite pre
ision from thebeginning of the algorithm. For te
hni
al reasons in the error analysis we need tohave the quantities vi =

1+x′

i

2 
omputed as rounded to the nearest �oating-pointnumber:
|v̂i − vi| ≤

1

2
ulp(v̂i),5



x̂i = ◦(◦(v̂i · (b̂− a)) + â).We will assume that b− a as well as a were 
omputed as rounded to nearest of the
orre
t value. The error analysis for the translated points on [a, b] gives:
| ◦ (v̂i · b̂− a)− vi · (b− a)| ≤ 5

2
ulp(◦(v̂i · b̂− a)) [Lemma 5℄

|x̂i − xi| ≤
1

2
ulp(x̂i) +

5

2
ulp(◦(v̂i · b̂− a)) +

1

2
ulp(â)

≤ 17

4
ulp(x̂i). [Lemma 4℄3.2 WeightsThe weights (wi)0≤i<n satisfy the equation

∫ 1

−1
p(x)dx =

n−1∑

i=0

wip(xi)for every polynomial of degree ≤ 2n− 1 (see Se
tion 2.3).For i ∈ [0, n − 1] we write Li(x) =
∏

j 6=i(x− xj). Noti
e that Li(x) = Pn(x)
(x−xi)P ′

n(xi)
.

L′
i has degree n− 2 so by de�nition < L′

i, Pn >= 0:
0 =

∫ 1

−1
Pn(x)L′

i(x)dx = [Pn(x)Li(x)]1−1 −
∫ 1

−1
P ′

n(x)Li(x)dx.

P ′
nLi has degree 2n− 1 so it is integrated exa
tly by the method:

0 =
P 2

n(1)

(1− xi)P ′
n(xi)

− P 2
n(−1)

(−1− xi)P ′
n(xi)

−
n−1∑

j=0

wjP
′
n(xj)Li(xj).From Equation (1) we 
an see that |Pn(±1)| = 1. Moreover Li(xj) = δi,j so

wi =
2

(1− x2
i )P

′2
n (xi)

. (2)Sin
e we 
an 
ompute xi to arbitrary pre
ision, we 
an use Equation (2) to 
ompute
wi with arbitrary a

ura
y as well. Re
all that P ′

n is known exa
tly and we 
an getan error bound on P ′
n(xi) (known as running error) using algorithm 5.1 from [4,p. 95℄. In the rest of this paper we will assume that ea
h wi is 
omputed as therounded to nearest of the exa
t value:

|ŵi − wi| ≤
1

2
ulp(ŵi).4 Integration AlgorithmIn order to provide an error bound on the numeri
al result given by the Gauss-Legendre method, we will have a step-by-step look into Algorithm 2.In addition to the parameters of Algorithm 2 we need an upper bound M2n of

|f (2n)| on [a, b]; p is the working pre
ision expressed in the number of bits of themantissa, â and b̂− a are given as the rounded to nearest �oating-point number inthe desired pre
ision; M1 an upper bound of |f ′| on [a, b]. We will now prove ourmain theorem: 6



Algorithm 2 Gauss-Legendre integrationInput: â, b̂− a, (ŵi), f, (v̂i), n ⊲ where wi are the weights and vi is de�ned in �2.4.Output: Î, a p-bit approximation of ∫ b

a
f(x)dx with error bounded by Theorem 3.1: for i← 0 to n− 1 do2: t← ◦((b̂− a) · v̂i)3: x̂i ← ◦(t + â)4: f̂i ← ◦(f(x̂i))5: ŷi ← ◦(f̂i · ŵi)6: end for7: Ŝ ← sum(ŷi, i = 0 . . . n− 1) ⊲ with Demmel and Hida algorithm [3℄8: D̂ ← ◦(b̂− a)/29: return ◦(D̂Ŝ) = ÎTheorem 3. Let δbyi

= 11
4 ulp(ŷi) + 6M1ŵi ulp(x̂i), where ŷi, ŵi and x̂i are de�nedin Algorithm 2. When 
omputing the numeri
al quadrature of f using Algorithm 2with p ≥ 2 the total error on the result is bounded by:

Btotal =
21

4
ulp(Î) +

5n

4
D̂ ·max(δbyi

) +
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.In the total error bound Btotal = Bmath + Brounding we will distinguish betweenthe bound on the mathemati
al error Bmath given in Se
tion 2.3, and the bound onthe rounding errors Brounding.Algorithm 2 
an be analyzed in several steps:1. The 
omputation of f(xi). We assume we have an implementation of f withan error bounded by 1 ulp on the result with pre
ision p.Su
h implementations of mathemati
al fun
tions in arbitrary pre
ision withbounded error on the result and even 
orre
t rounding for all rounding modesde�ned in the IEEE 754 standard 
an be found for example in MPFR [11℄ fornon-trivial fun
tions like exp, sin, arctan and numerous others.With the already estimated error on x̂i we have:

|f(x̂i)− f(xi)| = |f ′(θi)(x̂i − xi)|, θi ∈ [min(xi, x̂i),max(xi, x̂i)]and with an upper bound on f ′ we 
an bound this error absolutely. Let
f̂i = ◦(f(x̂i)) be the �oating-point number 
omputed. At this step we nowhave:

δbfi

= |f̂i − f(xi)| ≤ |f ′(θi)(x̂i − xi)|+ ulp(f̂i)

≤ 17

4
M1 · ulp(x̂i) + ulp(f̂i).

7



2. Computation of the yi = f(xi) · wi. The a

umulated error so far:
|ŷi − yi| ≤

1

2
ulp(ŷi) + |f̂iŵi − f(xi)wi|

≤ 1

2
ulp(ŷi) + f̂i|ŵi −wi|+ wi|f̂i − f(xi)|

≤ 1

2
ulp(ŷi) +

1

2
f̂iulp(ŵi) + wiδbfi

≤ 3

2
ulp(ŷi) + wi

[
17

4
M1 · ulp(x̂i) + ulp(f̂i)

] [Lemmas 1 and 2℄
≤ 3

2
ulp(ŷi) + (1 + 2−p)ŵi

[
17

4
M1 · ulp(x̂i) + ulp(f̂i)

] [Lemma 3℄
≤ (

7

2
+ 21−p)ulp(ŷi) + (1 + 2−p)M1ŵi

17

4
ulp(x̂i) [Lemmas 1 and 2℄

≤ (
7

2
+ 21−p)ulp(ŷi) +

(
17

4
+ 17 · 2−p−2

)
M1ŵiulp(x̂i) = δbyi

.Remark: when bounding the error on x̂i, f̂i as well as ŷi, the term with ulp(x̂i)vanishes if the error on x̂i is zero. One 
an easily show with our assumptionthat no under�ow o

urs, and that if x̂i = 0 then the error on x̂i is zero (i.e.,
xi = 0) and the ill-de�ned quantity ulp(x̂i) vanishes. For the error bound wekeep tra
k of only max(δbyi

).3. Summation of the yi's: this is done with Demmel and Hida summation algo-rithm [3℄, whi
h guarantees an error of at most 1.5 ulp on the �nal result. Thisalgorithm uses a larger working pre
ision p′ ≈ p + log2(n). Let S =
∑n−1

i=0 yi.
|Ŝ − S| ≤ 3

2
ulp(Ŝ) + n ·max(δbyi

).4. Multipli
ation by b−a
2 : I = b−a

2 S. We note D = b−a
2 and assume as beforethat the input b̂− a was 
omputed as the rounded to nearest of its exa
t value.Sin
e the division by 2 is exa
t in binary we have:

|D̂ −D| ≤ 1

2
ulp(D̂)

|Î − I| ≤ 1

2
ulp(Î) + |ŜD̂ − SD|

≤ 1

2
ulp(Î) +

1

2
|Ŝ|ulp(D̂) + D|Ŝ − S|

≤ 3

2
ulp(Î) + D

[
3

2
ulp(Ŝ) + n ·max(δbyi

)

] [Lemmas 1 and 2℄
≤ 3

2
ulp(Î) + (1 + 2−p)D̂

[
3

2
ulp(Ŝ) + n ·max(δbyi

)

] [Lemma 3℄
≤ (

9

2
+ 3 · 2−p)ulp(Î) + n(1 + 2−p)D̂ ·max(δbyi

). [Lemmas 1 and 2℄Corollary 1. If we assume furthermore that the sign of f does not 
hange on [a, b],8



then we have the following bound:
B′total =

161

4
ulp(Î) +

425

64
nM1D̂ max(ŵiulp(x̂i))

+
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.Proof: Let us assume for example that f ≥ 0, knowing that the Gauss-Legendreweights are positive we have

∀i ∈ [0, n − 1], ŷi = ◦(ŵi · f̂i) ≥ 0so
ulp(ŷi) ≤ 21−pŷi.Let S̃ =

∑n−1
i=0 ŷi, we know that

|S̃ − Ŝ| ≤ 3

2
ulp(Ŝ)

S̃ ≤ (1 + 3 · 2−p)Ŝ

L =
n−1∑

i=0

(
7

2
+ 21−p)ulp(ŷi)

≤ (
7

2
+ 21−p)21−p

n−1∑

i=0

ŷi

≤ 21−p(
7

2
+ 21−p)(1 + 3 · 2−p)Ŝ

≤ (7 + 22−p)(1 + 3 · 2−p)ulp(Ŝ).From this we get the following bound on the error on Ŝ:
|Ŝ − S| ≤

(
3

2
+ (7 + 21−p)(1 + 3 · 2−p)

)
ulp(Ŝ)

+nM1

(
17

4
+ 17 · 2−p−2

)
max(ŵiulp(x̂i))and substituting this expression in the bound of |Î − I| above yields the announ
edresult.5 Experiments: a 
omplete exampleAlgorithm 2 was implemented using the MPFR library [11℄. In addition to theresult of the integration, the program gives the error bounds Bmath and Broundingon the mathemati
al and rounding errors, respe
tively.We give now as an example how to use our algorithm to 
ompute an a

uratevalue for the integral given in the introdu
tion, namely:

I =

∫ 42

17
e−x2

log xdx.9



Let f(x) = e−x2

log x. We need to provide a bound on the derivatives of f on
[a, b] = [17, 42]. We note

g(x) = e−x2

h(x) = log x.Leibniz's formula gives
f (n)(x) =

n∑

i=0

(
n

i

)
di

dxi
g(x)

dn−i

dxn−i
h(x).For i ≥ 1 we 
an write

h(i)(x) = (−1)i+1(i− 1)!x−i.The derivatives of g need more work, but we 
an write
g(i)(x) = Gi(x)e−x2where Gi(x) is a polynomial and

G0 = 1

Gi+1 = −2xGi(x) + G′
i(x) for i ≥ 0. (3)From Equation (3) we see that Gi is an integer polynomial of degree i and has onlymonomials of the same parity as i. Furthermore the leading 
oe�
ient of Gi is

(−2)i.We will now prove by re
urren
e that for i ≥ 0 the 
oe�
ients of Gi are boundedin absolute value by (i + 1)!.The property is true for G0(x) = 1. Assume the property true for some i ≥ 0and write
Gi(x) =

i∑

j=0

ajx
j

Gi+1(x) =
i+1∑

j=0

bjx
j .For j ≤ i− 1 we have

bj = −2aj−1 + (j + 1)aj+1

|bj | ≤ 2(i + 1)! + (j + 1)(i + 1)!

≤ (j + 3)(i + 1)!

≤ (i + 2)!.Sin
e bi = 0 and |bi+1| = 2i+1 < (i + 2)! the property holds for i + 1.For n ≥ 0 and x ∈ [17, 42] we know that
|Gn(x)| ≤ n · (n + 1)!xn.

10



We may now bound |f (n)| as follows:
|f (n)(x)| ≤ |Gn(x)|e−x2

log x +
n−1∑

i=0

(
n

i

)
|Gi(x)|e−x2

(n− i− 1)!xi−n

≤ n · (n + 1)!xne−x2

log x + n!
n−1∑

i=0

i(i + 1)

n− i
x2i−ne−x2

≤ n · n!e−x2 (
(n + 1)xn log x + (n− 1)xn−2

)
.In parti
ular the following bound is valid for x ∈ [17, 42]:

|f (n)| ≤ n · n!e−172 (
(n + 1)42n log 42 + (n− 1)42n−2

)
.Using this bound we have 
omputed the value of I with our algorithm and several
hoi
es of working pre
isions p: 53 bits and 113 bits to reprodu
e the double andquad pre
ision, and pre
isions 200, 500, 1000, 2000 and 5000 bits to observe thebehaviour of our algorithm in higher pre
ision.

p m nopt Predi
tedgood bits Measuredgood bits Running time(ms) Weights
omputation time(% of total time)53 16 20 27 37 8 50113 16 35 87 103 16 80200 16 54 174 193 96 55500 32 80 474 498 404 341000 32 142 974 998 620 372000 32 254 1974 1994 2952 445000 32 556 4974 4995 32818 51Figure 1: Optimized order nopt for di�erent working pre
isions p in bits and orders m of
omposition. The timings were done on a 2.4GHz AMD Opteron� 250 pro
essor.For several orders m of 
omposition doubling at ea
h step, we seek to �ndthe smallest value of the number of points n for whi
h the bound Bmath on themathemati
al error is smaller than the bound Brounding on the rounding errors (seeFigure 1). This value of n is 
onsidered optimal in the sense that in
reasing itwill de
rease Bmath with no bene�t in the guaranteed a

ura
y sin
e Brounding willin
rease, and using a smaller value of n means that we are using too high a workingpre
ision. For ea
h set of parameters we give the number of good bits predi
tedby the software, and the number of bits a
tually 
orre
t, as measured against avalue that is assumed to be a

urate to a pre
ision higher than what we will requireafterwards. This referen
e value was 
omputed with a pre
ision p = 5200 bitsusing the 911-points Gauss-Legendre quadrature 
omposed 8 times. For this set ofparameters our algorithm gives
Bmath ≤ 2−5599

Brounding ≤ 2−5594

Btotal ≤ 2−559311



and a value v ≈ 1.011 · 2−421 in binary, so the 
omputed value is a

urate to about
5593 − 421 = 5172 bits of relative pre
ision, whi
h is enough for our experiments.The result of this experiment is given in Figure 1. For a given working pre
ision
p we noti
ed that for several orders of 
omposition m the number of predi
ted goodbits is the same (when we pi
k the optimal order n of the method) so we kept onlythe line with the best running time.In order to study how good the di�erent error bounds are, we 
hose to 
ompute
I with a working pre
ision of p = 1000 bits and an order of 
omposition m = 8 andvary the number of points n of the method.The results are given in Figure 2 for a 
omparison of the predi
ted error boundand the measured error, and Figure 3 for a 
omparison of the rounding error boundand the mathemati
al error bound.Looking at Figure 1 we see that when we use the optimal number of points n, thea

ura
y a
tually a
hieved is very 
lose to the working pre
ision: in other words,almost all bits are 
orre
t (ex
ept for p = 53 bits). The gap between the number ofbits predi
ted to be 
orre
t and the number of bits measured to be 
orre
t (whatwe may 
all our �pessimism fa
tor�) is stable at about 25 bits. We may 
onsiderfor example that for a working pre
ision of 2000 bits a loss of 20 in the number ofpredi
ted good bits (i.e., 1% of the working pre
ision) is satisfa
tory.
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Figure 2: The bound on the total error Btotal and the measured error when 
omputing Iwith m = 8 and 1000 bits of pre
ision, for several numbers of points n of the method.Looking at Figures 3 and 2 we observe that our pessimism stems from the boundon the mathemati
al error Bmath. As soon as Bmath ≤ Brounding the number of pre-di
ted good bits follows 
losely the number of bits measured 
orre
t. Our interpreta-tion is that the estimation of the rounding error bound is quite good. Be
ause of theoverestimation of the mathemati
al error, our algorithm �nds the value nopt = 254where n ≈ 175 would have been enough. Considering the 
ost of 
omputing the
oe�
ients of the Gauss-Legendre method whi
h is quadrati
 in n, we may again
onsider the performan
e of the experiment to be satisfa
tory, 
onsidering how littlework was needed to establish Bmath. 12
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Figure 3: The bounds Brounding on the rounding error and Bmath on the mathemati
alerror when 
omputing I with m = 8 and 1000 bits of pre
ision, for several numbers ofpoints n of the method.For the parameters used in Figure 1 the 
oe�
ients 
omputing time is about halfof the full running time (Figure 4) of the quadrature algorithm, whi
h is expe
tedsin
e we kept only the best 
omposition order for ea
h pre
ision. We tried onlypowers of 2 as 
omposition orders, but it is expe
ted that the per
entage is 
loserto 50% when the experiment is done over all possible (m,n) parameters. It is alsopossible to use pre
omputed values for these 
oe�
ients.As for the a
tual value of I 
omputed, we get
I ≈ 0.256572850056 · 10−126whi
h means that the �rst value v1 given by Maple 10 had one 
orre
t digit out often displayed.Our sour
e 
ode will be released under the GNU LGPL within a few months.6 Con
lusionThe Gauss-Legendre quadrature s
heme provides a robust numeri
al integrationalgorithm, in the sense that an in
rease in the order of the method results usuallyin an in
rease in the a

ura
y of the results. This is not true of the Newton-Cotes quadrature s
heme for example, where the stability su�ers from 
oe�
ientsof di�erent signs for n ≥ 8, if the working pre
ision is not in
reased a

ordingly.Providing the fun
tion f is su�
iently smooth on a �nite integration domain

[a, b] and bounds on its derivatives are known, we were able in this paper to proposea quadrature algorithm with a 
omplete error analysis. Our bound on the �nal erroris valid for any pre
ision or order of the method, and sin
e it is an a
tual bound andnot a mere estimate we do in fa
t 
ompute an interval 
ontaining the true value ofthe integral. 13



As future work we 
onsider an adaptation of our error bound when using anadaptive quadrature s
heme. If the bounds on the derivatives of f are known notonly globally for the whole interval but more pre
isely for sub-intervals, we may beable to use automati
ally a higher 
omposition order on spe
i�
 sub-intervals, asneeded. We are also interested to see how this kind of error bounds 
ould be givenfor the double exponential integration [7℄.
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A ProofsTheorem 1. The Gauss-Legendre method on [a, b] with n points is exa
t for poly-nomials of degree ≤ 2n− 1.Proof: by de�nition, the Gauss-Legendre quadrature s
heme being of interpolatorytype is exa
t for polynomials of degree ≤ n − 1. Let f be a polynomial of degree
≤ 2n− 1. We write

f = q · Pn + r, with deg(q) ≤ n− 1,deg(r) ≤ n− 1.Sin
e Pn is orthogonal to the set Pn−1 of polynomials of degree ≤ n− 1 we have
∫ 1

−1
q(x)Pn(x)dx = 0and ∫ 1

−1
r(x)dx = I(r)is 
omputed exa
tly by the method.Theorem 2. Let M2n be a bound of |f (2n)| on [a, b], then the error of the Gauss-Legendre integration of f on [a, b] with in�nite pre
ision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.Proof: Let E[f ] =

∫ 1
−1 f(x)dx−

∑n−1
i=0 wif(xi) be the error of the method for thefun
tion f . Let h be the polynomial of degree ≤ 2n− 1 su
h that

∀i ∈ [0, n − 1], f(xi) = h(xi) and f ′(xi) = h′(xi).Then the remainder theorem for polynomial interpolation states that
f(x) = h(x) +

f (2n)(ζ(x))

(2n!)
(x− x0)

2(x− x1)
2 . . . (x− xn−1)

2for −1 ≤ x ≤ 1 and a < ζ(x) < b. From Theorem 1, E[h] = 0 so we have
E[f ] = E

[
f (2n)(ζ(x))

(2n!)
(x− x0)

2(x− x1)
2 . . . (x− xn−1)

2

]

= −
∫ 1

−1

f (2n)(ζ(x))

(2n!)

P 2
n(x)

k2
n

dx.With the mean value theorem there exists ζ ∈ (−1, 1) su
h that
E[f ] = −f (2n)(ζ)

k2
n(2n!)

∫ 1

−1
P 2

n(x)dx.16



By multiplying Equation (1) by Pn−1(x) and integrating over [−1, 1] we get
(2n + 1)

∫ 1

−1
xPn−1(x)Pn(x)dx = n

∫ 1

−1
P 2

n−1(x)dx.Let vn =
∫ 1
−1 P 2

n(x)dx. By Eu
lidean division we 
an write xPn−1(x) = kn−1

kn
Pn(x)+

R(x) where deg(R) < n. So
(2n + 1)kn−1

kn

∫ 1

−1
P 2

n(x)dx = n

∫ 1

−1
P 2

n−1(x)dx

(2n + 1)kn−1

kn

vn = nvn−1

vn =

(
n

2n + 1

)
kn

kn−1
vn−1.Again from Equation (1) we get kn = 2n−1

n
kn−1, so

vn =
2n − 1

2n + 1
vn−1

vn =
2

2n + 1

kn =
(2n − 1)!

(n − 1)!n!2n−1
.Finally the error term is

E[f ] = f (2n)(ζ)
2[(n!)(n − 1)!]222n−2

((2n − 1)!)2(2n)!(2n + 1)

=
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ζ).Taking into a

ount the s
aling from [−1, 1] to [a, b] there is an additional ( 2

b−a

)nfa
tor in kn and b−a
2 in vn.Lemma 1. If c 6= 0 and x 6= 0 then c · ulp(x) < 2 · ulp(cx).Proof: if c < 0 it is void. By de�nition

2p−1ulp(x) ≤ |x|and
|cx| < 2pulp(cx)so

c · 2p−1ulp(x) ≤ |cx| < 2pulp(cx).Lemma 2. Assuming no under�ow o

urs then in all rounding modes for a nonzero real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the rounding of x in the
hosen mode with an unbounded exponent range.Proof: we have 2E(x)−1 ≤ |x| < 2E(x) and ulp(x) = 2E(x)−p. After rounding weget 2E(x)−1 ≤ | ◦ (x)| ≤ 2E(x) sin
e 2E(x) and 2E(x)−1 are exa
tly representable,therefore ulp(◦(x)) ≥ 2E(x)−p ≥ ulp(x). 17



Lemma 3. Let x a non-zero real and ◦(x) its rounding to nearest on p bits. Then
|x| ≤ (1 + 2−p)| ◦ (x)|.Proof: by de�nition of rounding to nearest we have

|x− ◦(x)| ≤ 1

2
ulp(◦(x)) ≤ 1

2
21−p| ◦ (x)|,

|x| ≤ | ◦ (x)|+ 2−p| ◦ (x)|.Lemma 4. Let a and b be two non-zero �oating-point numbers of the same signand pre
ision p then in all rounding modes
ulp(a) + ulp(b) ≤ 3

2
ulp(◦(a + b)).Proof: It su�
es to 
onsider the 
ase where a and b are positive. The de�nitionof ulp gives:

2p−1ulp(a) ≤ a < 2pulp(a),

2p−1ulp(b) ≤ b < 2pulp(b)thus
2p−1[ulp(a) + ulp(b)] ≤ a + b < 2p[ulp(a) + ulp(b)].If ulp(a) = ulp(b) we get

2pulp(a) ≤ a + b < 2p+1ulp(a)and therefore ulp(◦(a + b)) ≥ ulp(a + b) ≥ 2ulp(a) = ulp(a) + ulp(b) (Lemma 2)and the lemma holds.Otherwise we 
an assume without loss of generality that ulp(a) > ulp(b), thatis ulp(a) ≥ 2 · ulp(b). We dedu
e:
ulp(a) + ulp(b) ≤ 3

2
ulp(a),and together with ulp(◦(a + b)) ≥ ulp(a + b) ≥ ulp(a) (Lemma 2) this 
on
ludesthe proof.Lemma 5. For x and y real numbers and using rounding to nearest in pre
ision pwe have

| ◦ (◦(x) · ◦(y)) − xy| ≤ 5

2
ulp(◦(◦(x) · ◦(y))).Proof: let u = ◦(x), v = ◦(y) and z = ◦(uv). The signs of x and y don't 
hangethe result for the error on the multipli
ation. Sin
e we are interested in the relativeerror, we 
an multiply x or y by any power of 2. Without loss of generality we 
antherefore assume

1 ≤ x ≤ y < 2.Let e = 1
2ulp(1) = 2−p. With 
orre
t rounding to nearest we have
x = u(1 + θ), y = v(1 + θ′), uv = z(1 + θ′′) où |θ|, |θ′|, |θ′′| ≤ e.We 
onsider two 
ases: 18



Case x ≤ 1 + e: then u = ◦(x) = 1 and the multipli
ation z = ◦(uv) = uv is exa
t.The error 
an be bounded by
|z − xy| = |uv − xy|

≤ |uv| · |1− (1 + θ)(1 + θ′)|
≤ |uv|(21−p + 2−2p)

≤ |z|(21−p + 2−2p)(1 + 2−p).Then |z| ≤ (2p − 1)ulp(z) whi
h yields |z − xy| ≤ 2 + 2−p − 21−2p − 2−3p ≤ 5
2sin
e p ≥ 1.Case x > 1 + e: then u = ◦(x) ≥ 1 + 2e. The 
ondition x > 1 + e ensures that the�oating-point number 1+2e is 
loser to x than the �oating-point number 1, sothe rounded to nearest of x will in any 
ase be greater than the �oating-pointnumber 1 + 2e. We dedu
e

|u− x| ≤ e

≤ eu

1 + 2e

|θ| ≤ e

1 + 2e
.By the same argument we have

|θ′| ≤ e

1 + 2e
.The global error 
an then be bounded by:

|z − xy| =
1

2
ulp(z) + |uv − xy|

≤ 1

2
ulp(z) + |uv| · |1− (1 + θ)(1 + θ′)|

≤ 1

2
ulp(z) + |uv|

((
e

1 + 2e

)2

+
2e

1 + 2e

)

≤
(

1

2
+

(
1

e
− 1

)((
e

1 + 2e

)2

+
2e

1 + 2e

))
ulp(z)

≤
(

1

2
+

(5e + 2)(1 − e)

(1 + 2e)2

)
ulp(z).A simple fun
tion study 
on�rms that

(5e + 2)(1− e)

(1 + 2e)2
≤ 2.
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