
Aurate Multiple-Preision Gauss-LegendreQuadrature
Otober 2006AbstratNumerial integration is an operation that is frequently available in multiplepreision numerial software pakages. The di�erent quadrature shemes used areonsidered well studied but the rounding errors that result from the omputationare often negleted, and the atual auray of the results are therefore seldomrigorously proven.We propose an implementation of the Gauss-Legendre quadrature sheme withbounded error: given a bound on the derivatives of a funtion we are able to om-pute an interval ontaining the true value of the integral, in arbitrary preision. Theerror analysis is given as well as experimental error measurements and timings, anda omplete quadrature example.Keywords: numerial integration, error bound, Gauss-Legendre, multiple prei-sion.1 IntrodutionNumerial integration is readily available in most multiple preision numerial om-putation software (e.g. Pari/GP, MuPAD, Mathematia, Maple, . . . ). In thosesystems the preision an usually be tuned by the user for eah omputation (it isgenerally understood as the �working preision� but it may also be the number ofdigits displayed, when these two values di�er). It is however not neessarily learhow many, if any, of the displayed digits are orret. As a onrete example we askMaple 10 the value of I =

∫ 42
17 e−x2

log xdx with the default preision of 10 digits:> evalf(Int(exp(-x^2)*ln(x), x=17..42));-1260.2604007480 10We may want to ask for a seond value with a greater preision of 20 digits and wewould get v2 = 0.34288028340847034512 · 10−126 whih has no ommon digit withthe previous value v1 = 0.2604007480 · 10−126. As we will see later inreasing thepreision did in fat worsen the result.This experiment is a blunt reminder of the lak of lear semantis for �oating-point omputations beyond the basi operations overed by the IEEE 754 stan-dard [5℄. As soon as omputations are omposed or transendental funtions like1



the sine funtion are used nothing is guaranteed by the IEEE 754 standard, andmultiple-preision arithmetis is not overed either. This is however not an exuseto rely only on heuristis to ompute aurately, and it is still possible to obtainguaranteed results.Several approahes were made to overome these shortomings when omputingintegrals. One an mention the use of adaptive quadrature funtions with an au-tomati adjustment of the integration step to eah subinterval (in MuPAD [8℄), ordynami error ontrol (of simple or multiple integrals [1, 6℄). However well thesetehniques may work in pratie, they rely on heuristis to provide an aurateanswer to an integration problem.Our work di�ers from these approahes in that we seek to give a proven bound onthe error that takes into aount all soures of errors, inluding the rounding errors.What we ompute is in fat an interval ontaining the result of the integral, andwith a proper hoie of parameters one an use our algorithm to inrease arbitrarilythe preision on the result.This paper is organized as follows. We �rst reall brie�y the Gauss-Legendreintegration from a mathematial point of view, as well as some de�nitions andproperties of �oating-point arithmetis. In Setion 3 we will desribe the algorithmsused to ompute the Legendre polynomials and the oe�ients of the method, whihdo not depend on the funtion to integrate and an therefore be preomputed forseveral funtions.We follow with our main result in Setion 4: our quadrature algorithm (Algo-rithm 2) along with its error analysis and an error bound summarized in Theorem 3.We give a omplete example of use of our algorithm in Setion 5.2 Reminders2.1 Gauss-Legendre RuleWe give a desription of the Gauss-Legendre quadrature method. It is a member ofthe Gaussian family of quadrature methods whih is more generally studied in [2℄.In this paper, f : [a, b]→ R is the C∞ funtion we want to integrate on a �nitedomain [a, b] and n is the number of points of the Gauss-Legendre method. Let
I =

∫ b

a

f(x)dxbe the exat value of the integral. We de�ne the inner produt of f and g on [a, b]for the admissible weight funtion w as
< f, g >=

∫ b

a

w(x)f(x)g(x)dx.This leads to the de�nition of a sequene of orthogonal polynomials (pi)i≥0 suhthat:
∀i ∈ N,deg(pi) = i

∀(i, j) ∈ N2, < pi, pj >= δi,jwhere δi,j is Kroneker's delta. For �xed n > 0, pn has n distint roots in (a, b)whih we name x0 < x1 < . . . < xn−1. The Gauss quadrature method assoiated2



to the weight funtion w on [a, b] is the interpolatory method at evaluation points
(xi)0≤i<n suh that

∫ b

a

w(x)p(x)dx =
n−1∑

i=0

wip(xi)holds for every polynomial p of degree up to n − 1 (this is enough to de�ne theweights wi although the method will be shown to integrate aurately polynomialsof degree up to 2n− 1).The Gauss-Legendre quadrature method is the Gauss method for the weightfuntion w = 1. Additionally the Legendre polynomials (Pn)n≥0 are usually de�nedon [−1, 1] and normalized suh that Pn(1) = 1 and we will follow this ustom here.2.2 Legendre PolynomialsIn the rest of this paper Pn is the Legendre polynomial of degree n de�ned on [−1, 1]as usual. The quadrature method on [a, b] is derived from the quadrature method on
[−1, 1] from a shifting and saling in the polynomial. If we name (Vn) the updatedfamily of polynomials on [a, b] we have the simple formulas

Vn(u) = Pn

(
2u− (b + a)

b− a

)
and Pn(x) = Vn

(
a + b + x(b− a)

2

)
.We will mostly fous on [−1, 1] but the results will be given for the integrationinterval [a, b], with the details of the translation omitted.We denote by x′

0 < x′
1 < . . . < x′

n−1 the roots of Pn on [−1, 1] and use thenotation x0 < x1 < . . . < xn−1 for the translated roots on [a, b].Like other orthogonal polynomial sequenes, the polynomials (Pn)n≥0 satisfy areurrene relationship:





P0(X) = 1
P1(X) = X

(n + 1)Pn+1(X) = (2n + 1)XPn(X)− nPn−1(X).
(1)From (1) we dedue that Pn has only monomials of degree the parity of n and hasrational oe�ients. We reall Rodrigues' representation:

Pn =
1

2nn!

dn

dxn
((x2 − 1)n)whih shows that we an use 2n as ommon denominator for the polynomial's oef-�ients. Thus Pn an be written

Pn(X) =

{
2−nQn(X2) if n is even

2−nXQn(X2) otherwise.The problem of omputing Pn is redued to the one of omputing Qn, whih hasinteger oe�ients. The proedure is detailed in Algorithm 1.2.3 Mathematial errorIn this setion we give the bound on the mathematial error made with the Gauss-Legendre quadrature method. A generi proof for any weight funtion w an befound in [2℄. The proofs an be found in Appendix A.3



Algorithm 1 Computation of the Legendre PolynomialsInput: n ≥ 2.Output: Qn.1: Q0 ← 12: Q1 ← 23: p← 0 ⊲ holds the parity of the polynomial urrently omputed4: for i← 2 to n do5: Qp ← −4(i− 1)Qp + 2(2i− 1)X1−pQ1−p6: Qp ← 1
i
Qp ⊲ exat integer divisions7: p← 1− p8: end for9: return Q1−pTheorem 1. The Gauss-Legendre method on [a, b] with n points is exat for poly-nomials of degree ≤ 2n− 1.Theorem 2. Let M2n be a bound of |f (2n)| on [a, b], then the error of the Gauss-Legendre integration of f on [a, b] with in�nite preision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.We will use in Setion 5 the omposition of the Gauss-Legendre quadraturemethod: for an order of omposition m and an integration domain [a, b] the om-posed Gauss-Legendre method is the appliation of the Gauss-Legendre method oneah m intervals {[a, a + b−a

m
], [a + b−a

m
, a + 2 b−a

m
], . . . , [b− b−a

m
, b]}. The error of theomposed method on [a, b] with in�nite preision is therefore bounded by

(b− a)2n+1(n!)4

m2n(2n + 1)[(2n)!]3
M2n.2.4 Floating-point ArithmetisFor the error analysis of Algorithm 2, we need a few useful lemmas onerning the�ulp alulus�, as well as some de�nitions. The �oating-point numbers are repre-sented with radix 2 (this ould be generalized for any radix but radix 2 is simplerand is natural on omputers). For this setion, p is the working preision, and we as-sume all �oating-point numbers are normalized, whih means in our notations thatthe exponent range is unbounded. We denote by ◦(x) the �oating-point numberrounded to nearest in preision p of a given real value x.De�nition 1 (Exponent, Unit in the last plae). For a non-zero real number x wede�ne E(x) := 1+⌊log2 |x|⌋, suh that 2E(x)−1 ≤ |x| < 2E(x), and ulp(x) := 2E(x)−p.For a real x 6= 0 and a working preision p we always have 2p−1ulp(x) ≤ |x| <

2pulp(x). If x is a �oating-point number, then ulp(x) is the weight of the leastsigni�ant bit � zero or not � in the p-bit mantissa of x. For all real x, ulp(x) isalways greater than zero by de�nition.Lemma 1. If c 6= 0 and x 6= 0 then c · ulp(x) < 2 · ulp(cx).4



Lemma 2. Assuming no under�ow ours then in all rounding modes for a nonzero real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the rounding of x in thehosen mode with an unbounded exponent range.Lemma 3. Let x a non-zero real and ◦(x) its rounding to nearest on p bits. Then
|x| ≤ (1 + 2−p)| ◦ (x)|.Lemma 4. Let a and b be two non-zero �oating-point numbers of the same signand preision p then in all rounding modes

ulp(a) + ulp(b) ≤ 3

2
ulp(◦(a + b)).Lemma 5. For x and y real numbers and using rounding to nearest in preision pwe have

| ◦ (◦(x) · ◦(y)) − xy| ≤ 5

2
ulp(◦(◦(x) · ◦(y))).3 Pre-omputationsIn the integration algorithm the evaluation points and the weights of the method donot depend on the funtion to integrate and their omputation an thus be sharedamong several exeutions of the algorithm. We will now explain how this quantitiesare omputed.3.1 Evaluation pointsComputing the roots (x′

i)0≤i<n of Pn redues to the omputation of the roots of Qn.Let m = ⌊n2 ⌋ and u0 < u1 < . . . < um−1 be the roots of Qn, we have:
{
x′

0, x
′
1, . . . , x

′
n−1

}
=

{ {
±√u0, . . . ,±

√
um−1

}
if n is even,{

±√u0, . . . ,±
√

um−1,
}
∪ {0} otherwise.The proess of omputing the roots of Qn involves two steps:1. root isolation, that is �nding m intervals that ontain exatly one positive rootof Qn eah,2. root re�nement.The root isolation is made using Uspensky's algorithm as desribed in [10℄. Theinput of the algorithm is Qn(x), and the output is a sequene of m intervals of theform ci

2li
where ci and li are integers and suh that [ ci

2li
, ci+1

2li
] ontains exatly oneroot of Qn, namely ui. At this step, log2(ci) bits of ui are known.We use the interval Newton iteration desribed in [9℄ for the root re�nement.Sine this method omputes eah root in interval arithmetis, it is omputable toarbitrary preision with a known bound on the error.We denote by x̂ the value atually omputed (i.e., with all rounding errors) fora given �exat� value x, as would be omputed with an in�nite preision from thebeginning of the algorithm. For tehnial reasons in the error analysis we need tohave the quantities vi =

1+x′

i

2 omputed as rounded to the nearest �oating-pointnumber:
|v̂i − vi| ≤

1

2
ulp(v̂i),5



x̂i = ◦(◦(v̂i · (b̂− a)) + â).We will assume that b− a as well as a were omputed as rounded to nearest of theorret value. The error analysis for the translated points on [a, b] gives:
| ◦ (v̂i · b̂− a)− vi · (b− a)| ≤ 5

2
ulp(◦(v̂i · b̂− a)) [Lemma 5℄

|x̂i − xi| ≤
1

2
ulp(x̂i) +

5

2
ulp(◦(v̂i · b̂− a)) +

1

2
ulp(â)

≤ 17

4
ulp(x̂i). [Lemma 4℄3.2 WeightsThe weights (wi)0≤i<n satisfy the equation

∫ 1

−1
p(x)dx =

n−1∑

i=0

wip(xi)for every polynomial of degree ≤ 2n− 1 (see Setion 2.3).For i ∈ [0, n − 1] we write Li(x) =
∏

j 6=i(x− xj). Notie that Li(x) = Pn(x)
(x−xi)P ′

n(xi)
.

L′
i has degree n− 2 so by de�nition < L′

i, Pn >= 0:
0 =

∫ 1

−1
Pn(x)L′

i(x)dx = [Pn(x)Li(x)]1−1 −
∫ 1

−1
P ′

n(x)Li(x)dx.

P ′
nLi has degree 2n− 1 so it is integrated exatly by the method:

0 =
P 2

n(1)

(1− xi)P ′
n(xi)

− P 2
n(−1)

(−1− xi)P ′
n(xi)

−
n−1∑

j=0

wjP
′
n(xj)Li(xj).From Equation (1) we an see that |Pn(±1)| = 1. Moreover Li(xj) = δi,j so

wi =
2

(1− x2
i )P

′2
n (xi)

. (2)Sine we an ompute xi to arbitrary preision, we an use Equation (2) to ompute
wi with arbitrary auray as well. Reall that P ′

n is known exatly and we an getan error bound on P ′
n(xi) (known as running error) using algorithm 5.1 from [4,p. 95℄. In the rest of this paper we will assume that eah wi is omputed as therounded to nearest of the exat value:

|ŵi − wi| ≤
1

2
ulp(ŵi).4 Integration AlgorithmIn order to provide an error bound on the numerial result given by the Gauss-Legendre method, we will have a step-by-step look into Algorithm 2.In addition to the parameters of Algorithm 2 we need an upper bound M2n of

|f (2n)| on [a, b]; p is the working preision expressed in the number of bits of themantissa, â and b̂− a are given as the rounded to nearest �oating-point number inthe desired preision; M1 an upper bound of |f ′| on [a, b]. We will now prove ourmain theorem: 6



Algorithm 2 Gauss-Legendre integrationInput: â, b̂− a, (ŵi), f, (v̂i), n ⊲ where wi are the weights and vi is de�ned in �2.4.Output: Î, a p-bit approximation of ∫ b

a
f(x)dx with error bounded by Theorem 3.1: for i← 0 to n− 1 do2: t← ◦((b̂− a) · v̂i)3: x̂i ← ◦(t + â)4: f̂i ← ◦(f(x̂i))5: ŷi ← ◦(f̂i · ŵi)6: end for7: Ŝ ← sum(ŷi, i = 0 . . . n− 1) ⊲ with Demmel and Hida algorithm [3℄8: D̂ ← ◦(b̂− a)/29: return ◦(D̂Ŝ) = ÎTheorem 3. Let δbyi

= 11
4 ulp(ŷi) + 6M1ŵi ulp(x̂i), where ŷi, ŵi and x̂i are de�nedin Algorithm 2. When omputing the numerial quadrature of f using Algorithm 2with p ≥ 2 the total error on the result is bounded by:

Btotal =
21

4
ulp(Î) +

5n

4
D̂ ·max(δbyi

) +
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.In the total error bound Btotal = Bmath + Brounding we will distinguish betweenthe bound on the mathematial error Bmath given in Setion 2.3, and the bound onthe rounding errors Brounding.Algorithm 2 an be analyzed in several steps:1. The omputation of f(xi). We assume we have an implementation of f withan error bounded by 1 ulp on the result with preision p.Suh implementations of mathematial funtions in arbitrary preision withbounded error on the result and even orret rounding for all rounding modesde�ned in the IEEE 754 standard an be found for example in MPFR [11℄ fornon-trivial funtions like exp, sin, arctan and numerous others.With the already estimated error on x̂i we have:

|f(x̂i)− f(xi)| = |f ′(θi)(x̂i − xi)|, θi ∈ [min(xi, x̂i),max(xi, x̂i)]and with an upper bound on f ′ we an bound this error absolutely. Let
f̂i = ◦(f(x̂i)) be the �oating-point number omputed. At this step we nowhave:

δbfi

= |f̂i − f(xi)| ≤ |f ′(θi)(x̂i − xi)|+ ulp(f̂i)

≤ 17

4
M1 · ulp(x̂i) + ulp(f̂i).

7



2. Computation of the yi = f(xi) · wi. The aumulated error so far:
|ŷi − yi| ≤

1

2
ulp(ŷi) + |f̂iŵi − f(xi)wi|

≤ 1

2
ulp(ŷi) + f̂i|ŵi −wi|+ wi|f̂i − f(xi)|

≤ 1

2
ulp(ŷi) +

1

2
f̂iulp(ŵi) + wiδbfi

≤ 3

2
ulp(ŷi) + wi

[
17

4
M1 · ulp(x̂i) + ulp(f̂i)

] [Lemmas 1 and 2℄
≤ 3

2
ulp(ŷi) + (1 + 2−p)ŵi

[
17

4
M1 · ulp(x̂i) + ulp(f̂i)

] [Lemma 3℄
≤ (

7

2
+ 21−p)ulp(ŷi) + (1 + 2−p)M1ŵi

17

4
ulp(x̂i) [Lemmas 1 and 2℄

≤ (
7

2
+ 21−p)ulp(ŷi) +

(
17

4
+ 17 · 2−p−2

)
M1ŵiulp(x̂i) = δbyi

.Remark: when bounding the error on x̂i, f̂i as well as ŷi, the term with ulp(x̂i)vanishes if the error on x̂i is zero. One an easily show with our assumptionthat no under�ow ours, and that if x̂i = 0 then the error on x̂i is zero (i.e.,
xi = 0) and the ill-de�ned quantity ulp(x̂i) vanishes. For the error bound wekeep trak of only max(δbyi

).3. Summation of the yi's: this is done with Demmel and Hida summation algo-rithm [3℄, whih guarantees an error of at most 1.5 ulp on the �nal result. Thisalgorithm uses a larger working preision p′ ≈ p + log2(n). Let S =
∑n−1

i=0 yi.
|Ŝ − S| ≤ 3

2
ulp(Ŝ) + n ·max(δbyi

).4. Multipliation by b−a
2 : I = b−a

2 S. We note D = b−a
2 and assume as beforethat the input b̂− a was omputed as the rounded to nearest of its exat value.Sine the division by 2 is exat in binary we have:

|D̂ −D| ≤ 1

2
ulp(D̂)

|Î − I| ≤ 1

2
ulp(Î) + |ŜD̂ − SD|

≤ 1

2
ulp(Î) +

1

2
|Ŝ|ulp(D̂) + D|Ŝ − S|

≤ 3

2
ulp(Î) + D

[
3

2
ulp(Ŝ) + n ·max(δbyi

)

] [Lemmas 1 and 2℄
≤ 3

2
ulp(Î) + (1 + 2−p)D̂

[
3

2
ulp(Ŝ) + n ·max(δbyi

)

] [Lemma 3℄
≤ (

9

2
+ 3 · 2−p)ulp(Î) + n(1 + 2−p)D̂ ·max(δbyi

). [Lemmas 1 and 2℄Corollary 1. If we assume furthermore that the sign of f does not hange on [a, b],8



then we have the following bound:
B′total =

161

4
ulp(Î) +

425

64
nM1D̂ max(ŵiulp(x̂i))

+
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.Proof: Let us assume for example that f ≥ 0, knowing that the Gauss-Legendreweights are positive we have

∀i ∈ [0, n − 1], ŷi = ◦(ŵi · f̂i) ≥ 0so
ulp(ŷi) ≤ 21−pŷi.Let S̃ =

∑n−1
i=0 ŷi, we know that

|S̃ − Ŝ| ≤ 3

2
ulp(Ŝ)

S̃ ≤ (1 + 3 · 2−p)Ŝ

L =
n−1∑

i=0

(
7

2
+ 21−p)ulp(ŷi)

≤ (
7

2
+ 21−p)21−p

n−1∑

i=0

ŷi

≤ 21−p(
7

2
+ 21−p)(1 + 3 · 2−p)Ŝ

≤ (7 + 22−p)(1 + 3 · 2−p)ulp(Ŝ).From this we get the following bound on the error on Ŝ:
|Ŝ − S| ≤

(
3

2
+ (7 + 21−p)(1 + 3 · 2−p)

)
ulp(Ŝ)

+nM1

(
17

4
+ 17 · 2−p−2

)
max(ŵiulp(x̂i))and substituting this expression in the bound of |Î − I| above yields the announedresult.5 Experiments: a omplete exampleAlgorithm 2 was implemented using the MPFR library [11℄. In addition to theresult of the integration, the program gives the error bounds Bmath and Broundingon the mathematial and rounding errors, respetively.We give now as an example how to use our algorithm to ompute an auratevalue for the integral given in the introdution, namely:

I =

∫ 42

17
e−x2

log xdx.9



Let f(x) = e−x2

log x. We need to provide a bound on the derivatives of f on
[a, b] = [17, 42]. We note

g(x) = e−x2

h(x) = log x.Leibniz's formula gives
f (n)(x) =

n∑

i=0

(
n

i

)
di

dxi
g(x)

dn−i

dxn−i
h(x).For i ≥ 1 we an write

h(i)(x) = (−1)i+1(i− 1)!x−i.The derivatives of g need more work, but we an write
g(i)(x) = Gi(x)e−x2where Gi(x) is a polynomial and

G0 = 1

Gi+1 = −2xGi(x) + G′
i(x) for i ≥ 0. (3)From Equation (3) we see that Gi is an integer polynomial of degree i and has onlymonomials of the same parity as i. Furthermore the leading oe�ient of Gi is

(−2)i.We will now prove by reurrene that for i ≥ 0 the oe�ients of Gi are boundedin absolute value by (i + 1)!.The property is true for G0(x) = 1. Assume the property true for some i ≥ 0and write
Gi(x) =

i∑

j=0

ajx
j

Gi+1(x) =
i+1∑

j=0

bjx
j .For j ≤ i− 1 we have

bj = −2aj−1 + (j + 1)aj+1

|bj | ≤ 2(i + 1)! + (j + 1)(i + 1)!

≤ (j + 3)(i + 1)!

≤ (i + 2)!.Sine bi = 0 and |bi+1| = 2i+1 < (i + 2)! the property holds for i + 1.For n ≥ 0 and x ∈ [17, 42] we know that
|Gn(x)| ≤ n · (n + 1)!xn.

10



We may now bound |f (n)| as follows:
|f (n)(x)| ≤ |Gn(x)|e−x2

log x +
n−1∑

i=0

(
n

i

)
|Gi(x)|e−x2

(n− i− 1)!xi−n

≤ n · (n + 1)!xne−x2

log x + n!
n−1∑

i=0

i(i + 1)

n− i
x2i−ne−x2

≤ n · n!e−x2 (
(n + 1)xn log x + (n− 1)xn−2

)
.In partiular the following bound is valid for x ∈ [17, 42]:

|f (n)| ≤ n · n!e−172 (
(n + 1)42n log 42 + (n− 1)42n−2

)
.Using this bound we have omputed the value of I with our algorithm and severalhoies of working preisions p: 53 bits and 113 bits to reprodue the double andquad preision, and preisions 200, 500, 1000, 2000 and 5000 bits to observe thebehaviour of our algorithm in higher preision.

p m nopt Preditedgood bits Measuredgood bits Running time(ms) Weightsomputation time(% of total time)53 16 20 27 37 8 50113 16 35 87 103 16 80200 16 54 174 193 96 55500 32 80 474 498 404 341000 32 142 974 998 620 372000 32 254 1974 1994 2952 445000 32 556 4974 4995 32818 51Figure 1: Optimized order nopt for di�erent working preisions p in bits and orders m ofomposition. The timings were done on a 2.4GHz AMD Opteron� 250 proessor.For several orders m of omposition doubling at eah step, we seek to �ndthe smallest value of the number of points n for whih the bound Bmath on themathematial error is smaller than the bound Brounding on the rounding errors (seeFigure 1). This value of n is onsidered optimal in the sense that inreasing itwill derease Bmath with no bene�t in the guaranteed auray sine Brounding willinrease, and using a smaller value of n means that we are using too high a workingpreision. For eah set of parameters we give the number of good bits preditedby the software, and the number of bits atually orret, as measured against avalue that is assumed to be aurate to a preision higher than what we will requireafterwards. This referene value was omputed with a preision p = 5200 bitsusing the 911-points Gauss-Legendre quadrature omposed 8 times. For this set ofparameters our algorithm gives
Bmath ≤ 2−5599

Brounding ≤ 2−5594

Btotal ≤ 2−559311



and a value v ≈ 1.011 · 2−421 in binary, so the omputed value is aurate to about
5593 − 421 = 5172 bits of relative preision, whih is enough for our experiments.The result of this experiment is given in Figure 1. For a given working preision
p we notied that for several orders of omposition m the number of predited goodbits is the same (when we pik the optimal order n of the method) so we kept onlythe line with the best running time.In order to study how good the di�erent error bounds are, we hose to ompute
I with a working preision of p = 1000 bits and an order of omposition m = 8 andvary the number of points n of the method.The results are given in Figure 2 for a omparison of the predited error boundand the measured error, and Figure 3 for a omparison of the rounding error boundand the mathematial error bound.Looking at Figure 1 we see that when we use the optimal number of points n, theauray atually ahieved is very lose to the working preision: in other words,almost all bits are orret (exept for p = 53 bits). The gap between the number ofbits predited to be orret and the number of bits measured to be orret (whatwe may all our �pessimism fator�) is stable at about 25 bits. We may onsiderfor example that for a working preision of 2000 bits a loss of 20 in the number ofpredited good bits (i.e., 1% of the working preision) is satisfatory.
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Figure 2: The bound on the total error Btotal and the measured error when omputing Iwith m = 8 and 1000 bits of preision, for several numbers of points n of the method.Looking at Figures 3 and 2 we observe that our pessimism stems from the boundon the mathematial error Bmath. As soon as Bmath ≤ Brounding the number of pre-dited good bits follows losely the number of bits measured orret. Our interpreta-tion is that the estimation of the rounding error bound is quite good. Beause of theoverestimation of the mathematial error, our algorithm �nds the value nopt = 254where n ≈ 175 would have been enough. Considering the ost of omputing theoe�ients of the Gauss-Legendre method whih is quadrati in n, we may againonsider the performane of the experiment to be satisfatory, onsidering how littlework was needed to establish Bmath. 12
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Figure 3: The bounds Brounding on the rounding error and Bmath on the mathematialerror when omputing I with m = 8 and 1000 bits of preision, for several numbers ofpoints n of the method.For the parameters used in Figure 1 the oe�ients omputing time is about halfof the full running time (Figure 4) of the quadrature algorithm, whih is expetedsine we kept only the best omposition order for eah preision. We tried onlypowers of 2 as omposition orders, but it is expeted that the perentage is loserto 50% when the experiment is done over all possible (m,n) parameters. It is alsopossible to use preomputed values for these oe�ients.As for the atual value of I omputed, we get
I ≈ 0.256572850056 · 10−126whih means that the �rst value v1 given by Maple 10 had one orret digit out often displayed.Our soure ode will be released under the GNU LGPL within a few months.6 ConlusionThe Gauss-Legendre quadrature sheme provides a robust numerial integrationalgorithm, in the sense that an inrease in the order of the method results usuallyin an inrease in the auray of the results. This is not true of the Newton-Cotes quadrature sheme for example, where the stability su�ers from oe�ientsof di�erent signs for n ≥ 8, if the working preision is not inreased aordingly.Providing the funtion f is su�iently smooth on a �nite integration domain

[a, b] and bounds on its derivatives are known, we were able in this paper to proposea quadrature algorithm with a omplete error analysis. Our bound on the �nal erroris valid for any preision or order of the method, and sine it is an atual bound andnot a mere estimate we do in fat ompute an interval ontaining the true value ofthe integral. 13



As future work we onsider an adaptation of our error bound when using anadaptive quadrature sheme. If the bounds on the derivatives of f are known notonly globally for the whole interval but more preisely for sub-intervals, we may beable to use automatially a higher omposition order on spei� sub-intervals, asneeded. We are also interested to see how this kind of error bounds ould be givenfor the double exponential integration [7℄.
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A ProofsTheorem 1. The Gauss-Legendre method on [a, b] with n points is exat for poly-nomials of degree ≤ 2n− 1.Proof: by de�nition, the Gauss-Legendre quadrature sheme being of interpolatorytype is exat for polynomials of degree ≤ n − 1. Let f be a polynomial of degree
≤ 2n− 1. We write

f = q · Pn + r, with deg(q) ≤ n− 1,deg(r) ≤ n− 1.Sine Pn is orthogonal to the set Pn−1 of polynomials of degree ≤ n− 1 we have
∫ 1

−1
q(x)Pn(x)dx = 0and ∫ 1

−1
r(x)dx = I(r)is omputed exatly by the method.Theorem 2. Let M2n be a bound of |f (2n)| on [a, b], then the error of the Gauss-Legendre integration of f on [a, b] with in�nite preision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M2n.Proof: Let E[f ] =

∫ 1
−1 f(x)dx−

∑n−1
i=0 wif(xi) be the error of the method for thefuntion f . Let h be the polynomial of degree ≤ 2n− 1 suh that

∀i ∈ [0, n − 1], f(xi) = h(xi) and f ′(xi) = h′(xi).Then the remainder theorem for polynomial interpolation states that
f(x) = h(x) +

f (2n)(ζ(x))

(2n!)
(x− x0)

2(x− x1)
2 . . . (x− xn−1)

2for −1 ≤ x ≤ 1 and a < ζ(x) < b. From Theorem 1, E[h] = 0 so we have
E[f ] = E

[
f (2n)(ζ(x))

(2n!)
(x− x0)

2(x− x1)
2 . . . (x− xn−1)

2

]

= −
∫ 1

−1

f (2n)(ζ(x))

(2n!)

P 2
n(x)

k2
n

dx.With the mean value theorem there exists ζ ∈ (−1, 1) suh that
E[f ] = −f (2n)(ζ)

k2
n(2n!)

∫ 1

−1
P 2

n(x)dx.16



By multiplying Equation (1) by Pn−1(x) and integrating over [−1, 1] we get
(2n + 1)

∫ 1

−1
xPn−1(x)Pn(x)dx = n

∫ 1

−1
P 2

n−1(x)dx.Let vn =
∫ 1
−1 P 2

n(x)dx. By Eulidean division we an write xPn−1(x) = kn−1

kn
Pn(x)+

R(x) where deg(R) < n. So
(2n + 1)kn−1

kn

∫ 1

−1
P 2

n(x)dx = n

∫ 1

−1
P 2

n−1(x)dx

(2n + 1)kn−1

kn

vn = nvn−1

vn =

(
n

2n + 1

)
kn

kn−1
vn−1.Again from Equation (1) we get kn = 2n−1

n
kn−1, so

vn =
2n − 1

2n + 1
vn−1

vn =
2

2n + 1

kn =
(2n − 1)!

(n − 1)!n!2n−1
.Finally the error term is

E[f ] = f (2n)(ζ)
2[(n!)(n − 1)!]222n−2

((2n − 1)!)2(2n)!(2n + 1)

=
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ζ).Taking into aount the saling from [−1, 1] to [a, b] there is an additional ( 2

b−a

)nfator in kn and b−a
2 in vn.Lemma 1. If c 6= 0 and x 6= 0 then c · ulp(x) < 2 · ulp(cx).Proof: if c < 0 it is void. By de�nition

2p−1ulp(x) ≤ |x|and
|cx| < 2pulp(cx)so

c · 2p−1ulp(x) ≤ |cx| < 2pulp(cx).Lemma 2. Assuming no under�ow ours then in all rounding modes for a nonzero real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the rounding of x in thehosen mode with an unbounded exponent range.Proof: we have 2E(x)−1 ≤ |x| < 2E(x) and ulp(x) = 2E(x)−p. After rounding weget 2E(x)−1 ≤ | ◦ (x)| ≤ 2E(x) sine 2E(x) and 2E(x)−1 are exatly representable,therefore ulp(◦(x)) ≥ 2E(x)−p ≥ ulp(x). 17



Lemma 3. Let x a non-zero real and ◦(x) its rounding to nearest on p bits. Then
|x| ≤ (1 + 2−p)| ◦ (x)|.Proof: by de�nition of rounding to nearest we have

|x− ◦(x)| ≤ 1

2
ulp(◦(x)) ≤ 1

2
21−p| ◦ (x)|,

|x| ≤ | ◦ (x)|+ 2−p| ◦ (x)|.Lemma 4. Let a and b be two non-zero �oating-point numbers of the same signand preision p then in all rounding modes
ulp(a) + ulp(b) ≤ 3

2
ulp(◦(a + b)).Proof: It su�es to onsider the ase where a and b are positive. The de�nitionof ulp gives:

2p−1ulp(a) ≤ a < 2pulp(a),

2p−1ulp(b) ≤ b < 2pulp(b)thus
2p−1[ulp(a) + ulp(b)] ≤ a + b < 2p[ulp(a) + ulp(b)].If ulp(a) = ulp(b) we get

2pulp(a) ≤ a + b < 2p+1ulp(a)and therefore ulp(◦(a + b)) ≥ ulp(a + b) ≥ 2ulp(a) = ulp(a) + ulp(b) (Lemma 2)and the lemma holds.Otherwise we an assume without loss of generality that ulp(a) > ulp(b), thatis ulp(a) ≥ 2 · ulp(b). We dedue:
ulp(a) + ulp(b) ≤ 3

2
ulp(a),and together with ulp(◦(a + b)) ≥ ulp(a + b) ≥ ulp(a) (Lemma 2) this onludesthe proof.Lemma 5. For x and y real numbers and using rounding to nearest in preision pwe have

| ◦ (◦(x) · ◦(y)) − xy| ≤ 5

2
ulp(◦(◦(x) · ◦(y))).Proof: let u = ◦(x), v = ◦(y) and z = ◦(uv). The signs of x and y don't hangethe result for the error on the multipliation. Sine we are interested in the relativeerror, we an multiply x or y by any power of 2. Without loss of generality we antherefore assume

1 ≤ x ≤ y < 2.Let e = 1
2ulp(1) = 2−p. With orret rounding to nearest we have
x = u(1 + θ), y = v(1 + θ′), uv = z(1 + θ′′) où |θ|, |θ′|, |θ′′| ≤ e.We onsider two ases: 18



Case x ≤ 1 + e: then u = ◦(x) = 1 and the multipliation z = ◦(uv) = uv is exat.The error an be bounded by
|z − xy| = |uv − xy|

≤ |uv| · |1− (1 + θ)(1 + θ′)|
≤ |uv|(21−p + 2−2p)

≤ |z|(21−p + 2−2p)(1 + 2−p).Then |z| ≤ (2p − 1)ulp(z) whih yields |z − xy| ≤ 2 + 2−p − 21−2p − 2−3p ≤ 5
2sine p ≥ 1.Case x > 1 + e: then u = ◦(x) ≥ 1 + 2e. The ondition x > 1 + e ensures that the�oating-point number 1+2e is loser to x than the �oating-point number 1, sothe rounded to nearest of x will in any ase be greater than the �oating-pointnumber 1 + 2e. We dedue

|u− x| ≤ e

≤ eu

1 + 2e

|θ| ≤ e

1 + 2e
.By the same argument we have

|θ′| ≤ e

1 + 2e
.The global error an then be bounded by:

|z − xy| =
1

2
ulp(z) + |uv − xy|

≤ 1

2
ulp(z) + |uv| · |1− (1 + θ)(1 + θ′)|

≤ 1

2
ulp(z) + |uv|

((
e

1 + 2e

)2

+
2e

1 + 2e

)

≤
(

1

2
+

(
1

e
− 1

)((
e

1 + 2e

)2

+
2e

1 + 2e

))
ulp(z)

≤
(

1

2
+

(5e + 2)(1 − e)

(1 + 2e)2

)
ulp(z).A simple funtion study on�rms that

(5e + 2)(1− e)

(1 + 2e)2
≤ 2.
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