
Accurate Summation: Towards a Simpler and

Formal Proof

Laurent Fousse a, Paul Zimmermann b

a3, impasse Manet, F-57730 Folschviller
bLORIA/INRIA Lorraine, 615, rue du jardin botanique, F-54602

Villers-lès-Nancy Cedex

Abstract

This paper provides a simpler proof of the “accurate summation” algorithm pro-
posed by Demmel and Hida in [1]. It also gives improved bounds in some cases, and
examples showing that those new bounds are optimal. This simpler proof will be
used to obtain a computer-checked proof of Demmel-Hida’s algorithm.

Key words: Floating point summation, bounded error, formal proof.

1 Introduction

Adding several floating-point numbers with good accuracy is an important
problem of scientific computing. The best possible result is to provide cor-
rect rounding within the target precision and the given rounding mode. For
a sum of two numbers, this can be obtained with a configuration following
the IEEE 754 standard [3]. For a sum of three or more numbers, not only the
floating-point addition is not associative, but some cancellations may occur in
the intermediate sums, that will make the final result completely wrong. Sev-
eral algorithms have been proposed to overcome this problem. Floating-point
expansions [5] enable one to emulate an arbitrary-precision arithmetic using
fixed-precision floating-point numbers: an intermediate result is represented
by a sum of disjoint floating-point numbers, so that the most significant one
represents the rounding to nearest of the result.

Email addresses: laurent@fousse.info (Laurent Fousse), zimmerma@loria.fr
(Paul Zimmermann).

Preprint submitted to Real Numbers and Computers’5 14 July 2003

We focus in this paper on algorithms that use an internal register, with a pre-
cision that is larger than that of the summands and the final result (which we
assume to have same precision for simplicity). Kulish and Bohlender propose
in [4] an algorithm that provides correct rounding of a dot product of n-digit
vectors, with an accumulator of 2n + 2 digits plus two bits. However, Kulish-
Bohlender’s algorithm is quite expensive to implement, since it requires to sort
the inputs by decreasing exponent, and to combine those of same exponent
(in a way similar to floating-point expansions).

More recently, Demmel and Hida proposed in [1,2] a simple algorithm that
yields a sum correct to within about 1.5 ulps, as long as the number of sum-
mands is not too large. The proof of the main theorem from [1] is quite com-
plex; quoting [2]: “it [the proof of Theorem 1] involves a detailed case analysis
requiring 19 pages”. Such a long proof is difficult to completely grasp by a
human-being, and is therefore a good candidate for the use of a proof assis-
tant.

Our goal is to provide an alternate proof of Theorem 1 from [1], which could
be computer-checked by a proof assistant like HOL, PVS or Coq. This paper
is a first step towards this goal. A first objective is to reduce the number of
cases (6 cases and 11 subcases) from Demmel-Hida’s proof. A second objective
is to understand if the bounds given by Demmel and Hida are all optimal,
since examples that attain them are not given in all cases. A third objective
is to transform the intermediate lemmas from the proof to better computer-
readable statements. For example the following statement is hard to translate
literally in computer form:

Fact 1. The rightmost nonzero bit of ̂SUMk must lie at or to the left of the
trailing bit of sk. This is because ̂SUMk is gotten by summing s1 through
sk, whose trailing bits are at or to the left of the trailing bit of sk, since the
exponents of s1 through sk are in decreasing order.

Our paper is organized as follows. Section 2 introduces the notations and as-
sumptions used in the rest of the paper, recalls Demmel-Hida’s algorithm and
Theorem 1. Section 3 provides some simpler proofs of the different cases con-
sidered by Demmel and Hida. Section 4 gives examples reaching those bounds,
thus showing that they are optimal. Finally, Section 6 describes our workplan
to complete the computer-checked proof of Demmel-Hida’s algorithm.

2

2 Demmel-Hida’s Algorithm

2.1 Notations

Exponent. For x a non-zero real number (not necessarily a floating-point
number), we define E(x) := 1 + blog2 |x|c, such that 2E(x)−1 ≤ |x| < 2E(x).

Unit in last place. For x a non-zero real number (not necessarily a floating-
point number), and an integer f ≥ 1, we define ulpf (x) := 2E(x)−f . When x is
a floating-point number with a mantissa of f bits, ulpf (x) corresponds to the
weight of the last mantissa bit.

Rounding. We denote ◦F (x) the F -bit floating-point number that is nearest
from the real x, with ties broken to even mantissa. (We consider here only
rounding to nearest.) When the destination variable t has known precision F ,
we may omit the index F and write simply t← ◦(x).

Exact/Inexact. We say that a computation ◦(x + y) is exact (resp. inexact)
when the result is (resp. is not) exactly x + y. When that result is stored in a
variable, like z ← ◦(x + y), we say that “z is exact”, meaning that z = x + y.

In the following we consider floating-point numbers with unbounded exponent,
i.e. no underflow nor overflow occurs. (Demmel and Hida allow gradual un-
derflow in their proof, but for sake of simplicity we disallow it here.)

2.2 Demmel-Hida’s algorithm

Consider the following sequence of operations, where all si and S have precision
f , the ti have precision F > f , and the si have non-increasing exponents:

Algorithm 1.
t0 ← 0
for i← 1 to n

ti ← ◦F (ti−1 + si)
S ← ◦f (tn)

Remark. Replacing the two last operations of Algorithm 1 — tn ← ◦F (tn−1+
sn) and S ← ◦f (tn) — by S ← ◦f (tn−1 +sn) may avoid the “double rounding”
problem, and thus reduce the final error by 1

2
ulpF (tn). However we don’t con-

sider this improvement here, and stick to the original algorithm from Demmel
and Hida.

3

Theorem 1 [1] Assume F > f ≥ 2, the exponent range for the F -bit format
is at least as wide as that for the f -bit format, rounding is to nearest (ties
may be broken arbitrarily), underflow is gradual if it occurs, and no overflow
occurs. Let

n̄ = 1 +

⌊
2F

2f − 1

⌋

then one of the following four cases holds for the error ε in ulps on the com-
puted sum S at the end of Algorithm 1:

(1) if n ≤ n̄, then ε ≤ 1
1−21−f + 1

2
;

(2) if n = n̄+1, F ≥ 2f , and s2 is normalized, then ε ≤ max{2.5, 1.5
1−21−f + 1

2
};

(3) if n = n̄ + 1, and either F < 2f or s2 is unnormalized, then ε ≤
max{3.5, 2r + 1

2
} where r = f − (F mod f), 1 ≤ r ≤ f ;

(4) if n ≥ n̄+2, then ε can be larger or equal to 1. In particular, the computed
sum may be zero when the true sum is not.

In addition to Demmel-Hida notations, we define k := F − f . Then n̄ =
1+2k +b2k−f +2k−2f + · · ·c. For F < 2f , we have n̄ = 1+2k; for 2f ≤ F < 3f ,
we have n̄ = 1 + 2k + 2k−f ; and so on.

3 Bounds

3.1 Notations

Error and total error. Let ρj := |tj − (tj−1 + sj)| be the rounding error on
tj — we will simply say the “error on tj” —, εj :=

∑j
l=1 ρl the total error on

tj, in terms of ulpF (tj), and ε the final error on S, in terms of ulpf (S). We
will also sometimes consider partial sums: εi,j :=

∑
i<l≤j ρl.

Exponent difference. For 1 ≤ i ≤ j ≤ n, we define ej := E(tj) − E(ti) to
be the exponent difference between tj and ti.

3.2 Case (1): n ≤ n̄

We prove here a few lemmas that will help us to prove Theorem 2, which
corresponds to case (1) of Theorem 1. The first result is that after the first
inexact partial sum ti, the summands sj cannot be too large (Lemma 1), and
thus the partial sums tj cannot decrease too rapidly (Lemma 4). The key idea

4

of the proof is that when the exponent decreases by one from tj−1 to tj, the
total error accumulated so far is multiplied by two, since it is now expressed
in terms of ulpF (tj), but on the other side the maximum absolute value of
further summands sj that may produce a rounding error is divided by two.
Lemma 5 expresses this trade-off between having large sj (and thus making
tj decrease rapidly) and accumulating rounding errors.

Lemma 1 Let i ≤ n be the smallest index such that ti is inexact, i.e. ti 6=
ti−1 + si. Then ulpF (ti) > ulpf (si).

(If no such i exists, then case (1) of Theorem 1 is trivial.)

Proof. Since ulpf (sj) ≥ ulpf (si) for j ≤ i, we can write s1 + · · · + si =
m ·ulpf (si) with m an integer. Since ti−1 is exact, ti is the rounding to nearest
of m · ulpf (si). Then ti inexact implies |m| ≥ 2F , which implies | ◦ (m)| ≥ 2F ,
and ulpF (ti) > ulpf (si). 2

The following result is sort of a converse of Lemma 1:

Lemma 2 If ulp(sj) ≥ ulp(tj), then tj is exact.

Proof. By definition of rounding to nearest, the rounding error on tj is at
most 1

2
ulp(tj). Since tj−1 is the (rounded) sum of s1 to sj−1, which have an

exponent greater or equal to that of sj, tj−1 is an integer multiple of ulp(sj).
Then tj−1 + sj is also an integer multiple of ulp(sj), and of ulp(tj) since
ulp(sj) ≥ ulp(tj). The only one such multiple at distance 1

2
ulp(tj) of tj is

precisely tj, which is then exact. 2Remark. The fact that tj−1 is the sum
of numbers with exponent larger or equal to that of sj is crucial here: the above
result is wrong for t′ := ◦(t + s). Take for example f = 2, F = 3, t = 0.111,
s = 0.11, then t′ = ◦3(1.101) = 1.10 is inexact, while ulp(s) ≥ ulp(t′) holds.
(However, a sufficient auxiliary condition is ulp(t′) ≤ ulp(t).)

Lemma 3 Let t be a floating-point number of precision F . Let s be a real
number such that |s| < 2l, with E(t)− F ≤ l < E(t). Let t′ = ◦F (t + s), then
|t′ − t| ≤ 2l.

Proof. Without loss of generality we can consider that t is positive. The
condition |s| < 2l implies |s| < t since t ≥ 2E(t)−1 ≥ 2l.

First consider s negative. The condition E(t) − F ≤ l < E(t) implies 1 ≤
2l

ulp(t)
≤ 2F−1. Since t can be written m · ulp(t) with 2F−1 ≤ m < 2F , we

deduce 0 ≤ t−2l

ulp(t)
< 2F , thus t− 2l is exactly representable with a precision of

F bits. The real t + s is enclosed by two representable numbers t − 2l and t,
thus the same holds for its rounding: t− 2l ≤ t′ ≤ t, and the statement of the
lemma follows.

5

Now consider s positive. If t + 2l is exactly representable, the same reasoning
as above holds. If t + 2l is not representable on F bits, then it is the middle
of two consecutive F -bit representable numbers u < u+. Since t + s < t + 2l,
necessarily t′ := ◦(t + s) ≤ u < t + 2l. 2

Corollary 1 With the notations of Lemma 3, if s is a f -bit floating-point
number, and ulpf (s) ≤ ulpF (t′), then |t′| ≥ |t| − (2f − 1)ulpF (t′).

Proof. Assume t positive. If s is positive, the corollary is trivial. If ulpf (s) <
ulpF (t′), Lemma 3 gives |t′ − t| ≤ 2f−1ulpF (t′). If ulpf (s) = ulpF (t′), since
E(t′) ≤ E(t), t′ is necessarily exact (see the remark following Lemma 2). 2

Lemma 4 Let i be the first index such that ti is inexact, and i′ ≥ i such that
E(tj) < E(ti) for i′ < j ≤ n (take i′ = n if E(tj) ≥ E(ti) for i < j < n).
Then for j ≤ i′ + n̄− 2, we have E(tj) ≥ E(ti)− k.

Proof. (Remember that k := F − f .) From Lemma 1 and the decrease
of the exponents of the sj, we deduce ulpf (sj) < ulpF (ti) for j ≥ i′. Thus
from Corollary 1 the maximum decrease due to sj is 1

2
(2f − 1)ulpF (ti). When

summing n̄− 2 terms, we thus have:

|tj| ≥ |ti′| − 1
2
(n̄− 2)(2f − 1)ulpF (ti)

≥ 1
2
[2F − (n̄− 2)(2f − 1)]ulpF (ti) ≥ 2f−1ulpF (ti),

since 2F > (n̄−1)(2f −1), because 2f −1 cannot divide exactly 2F (remember
f ≥ 2). 2

We define for j > i′ the “decrease default” dj as the difference between the
maximal decrease between tj−1 and tj — which is 2f−1ulpF (ti), which may
occur only when E(sj) = E(si) — and the real decrease; we also define Dn :=∑

i′<j<n dj to be the cumulative decrease default from i′ + 1 to n.

Lemma 5 Let i and i′ as in Lemma 4. Then for n < i′+ n̄−1, the total error
when summing sj for i′ < j ≤ n satisfies

εi′,j <
2k − 2−en−1(2k − (n− i′)(1− 2−f))

1− 21−f
ulpF (tn).

Proof. (If i′ = n, the error is zero, and the statement is true.) Let δj :=

log2
ulpF (tj)

ulpf (sj)
be the logarithmic difference between ulpF (tj) and ulpf (sj). If

δj ≤ 0, then ulpF (tj) ≤ ulpf (sj), thus tj is exact from Lemma 2. If δj > 0,
then ulpf (sj) ≤ 1

2
ulpF (tj), thus by Lemma 3 the decrease from tj−1 to tj is

bounded by 2f−1ulpF (tj). Since E(tj) < E(ti) for j > i′, this maximal decrease
is about half of the value 1

2
(2f − 1)ulpF (ti) taken into account in Lemma 4.

6

Thus the decrease default dj is at least (2f−1 − 1)ulpF (tj) per index j > i′

such that δj > 0:

Dn ≥
∑

i′<j≤n
δj>0

(2f−1 − 1)ulpF (tj) = (2f−1 − 1)
∑

i′<j≤n
δj>0

2ejulpF (ti).

Without taking into account the decrease default, we would have:

|tn| ≥ |ti′| − 1
2
(n− i′)(2f − 1)ulpF (ti) ≥ 1

2
[2F − (n− i′)(2f − 1)]ulpF (ti)

≥ [2k − (n− i′)(1− 2−f)]2f−1ulpF (ti).

Thus, taking into account the decrease default, we have [2k − (n − i′)(1 −
2−f)]2f−1ulpF (ti) + Dn ≤ |tn| < 2F ulpF (tn) = 2F+enulpF (ti). It follows:

2k − (n− i′)(1− 2−f) + (1− 21−f)
∑

i′<j≤n
δj>0

2ej < 2k+1+en . (1)

The sum εi′,n of rounding errors on tj for i′ < j ≤ n is at most:

εi′,n ≤
∑

i′<j≤n
δj>0

1

2
ulpF (tj) = 2−en−1ulpF (tn)

∑
i′<j≤n

δj>0

2ej .

Using Eq. (1), this gives

(1− 21−f)εi′,n≤ 2−en−1[2k+1+en − 2k + (n− i′)(1− 2−f)] ulpF (tn)

≤ [2k − 2−en−1(2k − (n− i′)(1− 2−f))] ulpF (tn). 2

Theorem 2 Let i be the smallest index such that ti is inexact. Then for n ≤
i + n̄− 2, the total error on tn satisfies εn < 2k

1−21−f ulpF (tn).

Proof. First assume that E(tj) ≤ E(ti) for j ≥ i. Let i′ as in Lemma 5. The
maximal error when summing si up to si′ (both included) is i′−i+1

2
ulpF (ti) =

(i′ − i + 1)2−en−1ulpF (tn). Together with the bound on the cumulated error
when adding si′+1 to sn given by Lemma 5, this gives a total error on tn in
terms of ulpF (tn) less than:

2k−2−en−1(2k−(n−i′)(1−2−f))
1−21−f + (i′ − i + 1)2−en−1 1−2−f

1−21−f

≤ 2k−2−en−1(2k−(n−i+1)(1−2−f))
1−21−f .

7

For n ≤ i + n̄− 2, we have (n− i + 1)(1− 2−f) ≤ (n̄− 1)(1− 2−f) < 2k, and
the theorem follows.

Consider now that there exists j > i such that E(tj) > E(ti). Then for l > i,

|tl| ≥ |tj| − (n̄ − 1)2f−1
2

ulpF (ti) ≥ [2F − b 2F

2f−1
c2f−1

2
]ulpF (ti) ≥ 2F−1ulpF (ti).

Thus E(tl) ≥ E(ti). On the other side, |tl| ≤ |ti| + (n̄ − 1)2f−1ulpF (ti) <
2F [1 + 1

2(1−2−f)
]ulpF (ti) ≤ 2F+1ulpF (ti). It follows E(tl) ≤ E(ti) + 1. We thus

deduce E(tl) ≤ E(tn) + 1 for i ≤ l ≤ n, and the total error on tn satisfies:

εn

ulpF (tn)
<

1

2

n∑
l=i

2E(tl)−E(tn) ≤ n− i + 1 ≤ n̄− 1 ≤ 2F

2f − 1
≤ 2k

1− 21−f
. 2

Since i ≥ 2 (t1 is always exact), we get the following corollary.

Corollary 2 For n ≤ n̄, the total error on tn satisfies εn < 2k

1−21−f ulps.

3.3 Cases (2) and (3): n = n̄ + 1

Theorem 3 When n = n̄ + 1, the error on S is ε ≤ max{ 2
1−21−f + 1

2k+1 +
1
2
, 2r−1} with r = f − (F mod f).

Proof. With the notations of Lemma 5, assume i′ ≥ 3, then Lemma 5 applies
since n < i′ + n̄− 1, and E(tn) ≥ E(ti)− k, thus Theorem 2 applies to bound
the rounding errors on t3 to tn, and the error on t2 is at most 2k−1ulpF (tn),
which gives a total error ≤ 2k[1

1−21−f + 1
2
]ulpF (tn), thus at most 1

1−21−f +1 ulps
on S.

If i′ = i = 2, we distinguish two cases: (i) ulpf (sj) = ulpF (t3) for 3 ≤ j ≤
n, and (ii) at least one ulpf (sj) < ulpF (t3). In case (ii), we have |sn̄+1| ≤
2f−2ulpF (t2), so |tn̄+1| ≥ |tn̄| − 2f−2ulpF (t2), and with |tn̄| ≥ 2f−1ulpF (t2)

this yields: |tn̄+1|
|tn̄| ≥ 1 − 2f−2ulpF (t2)

|tn̄| ≥ 1 − 1
2

= 1
2

thus E(tn̄+1) ≥ E(tn̄) − 1,

and the final error is at most twice that on tn̄ (from Theorem 2) plus 1
2
, i.e.

≤ 2k+1

1−21−f + 1
2

ulps on tn. After division by 2k, and addition of the maximal

error of 1
2

on S, this gives 2
1−21−f + 1

2k+1 + 1
2
, which is always larger than the

bound in case i′ ≥ 3.

In case (i), ulpf (sj) = ulpF (t3), we have ulpf (sj) ≥ ulpF (tj) for 3 ≤ j ≤ n,
since ulpF (tj) cannot exceed ulpF (t3).

1 This by Lemma 2 all tj are exact for

1 Remember that forj > i′ = 2, E(tj) < E(ti′ , and necessarily E(ti′+1) = E(ti′)−1,
since the exponent cannot decrease by more than one from ti′ to ti′+1, because
|si′+1| < 2f−1ulpF (ti′) ≤ 1

2 |ti′ |.

8

j ≥ 3, thus the error only comes from the rounding error on t2, multiplied by
2E(t2)−E(tn). We have the following inequalities:

|t2| ≥ 2F−1ulpF (t2) (2)

|sj| ≤
1

2
(2f − 1)ulpF (t2) for 3 ≤ j ≤ n̄ + 2 (3)

tn≥
1

2
[2F − (n̄− 1)(2f − 1)]ulpF (t2)

≥ 1

2
[2F − b 2F

2f − 1
c(2f − 1)]ulpF (t2)

= 2(F mod f)−1ulpF (t2) (4)

Thus E(tn) ≥ E(t2) + (F mod f) − F , and the error on tn satisfies εn ≤
1
2
2F−(F mod f)ulpF (tn), and that on S is ε ≤ 2f−1−(F mod f) = 2r−1.

If at least one inequality of (2) or (3) is strict, then (4) is strict as well, so
the worst exponent decrease occurs only in this particular case where there
is no rounding error on the final step (see Section 4.2 for an example). This
explains why we don’t have the 1

2
rounding error as usual. In all other cases

we can bound the total error on S by 2r−2 + 1
2
≤ 2r−1 because r ≥ 1.

4 Reaching the Bounds

We assume here that even rounding, i.e. ties are broken by rounding to the
floating-point number with a mantissa ending by a zero. 2

4.1 Case (1): n ≤ n̄

Lemma 6 When summing n = 1 + 2k terms, we can get as near as desired
to the error bound of 1.5 ulpf (S).

Proof. Let s1 = 1 + 2k−f+1 − 21−f , si = 2−F − 21−f for 1 < i < n, and
sn = 2−F−1− 2−f − 2−f−1. Then for 1 ≤ i < n, ti = 1+2k−f+1− i · 21−f . (easy
induction)
Since n − 1 = 2k, we get tn−1 = 1 + 2k−f+1 − 2k · 21−f = 1, and each of the
n−2 summations gives an error of 1

2
ulpF (t1). The total error on S is therefore

1
2
(2k − 1)ulpF (t1) + 1

2
ulpf (S) = (2k − 1) ulpF (tn) + 1

2
ulpF (tn) + 1

2
ulpf (S) =

(3
2
− 1

2k+1) ulpf (S). 2

2 This implies f ≥ 2 since for f = 1 all non-zero numbers have an odd mantissa.

9

Here is an example for f = 7, F = 10, n = 1 + 23 = 9:

s1 = t1 = 1.000111000
s2 = − 0.0000001111000
t2 = 1.000110000
s3 = − 0.0000001111000
t3 = 1.000101000
s4 = − 0.0000001111000
t4 = 1.000100000
s5 = − 0.0000001111000
t5 = 1.000011000
s6 = − 0.0000001111000
t6 = 1.000010000
s7 = − 0.0000001111000
t7 = 1.000001000
s8 = − 0.0000001111000
t8 = 1.000000000
s9 = − 0.0000001011100
t9 = 0.1111110100
S = 0.1111110

Correct Sum = 0.111111101110

Remark. Taking the same example, but starting from ti instead of t1, we get
an error of 2n−3

2k+1 + 1
2

for n ≤ 1 + 2k.

4.2 Case (3): n = n̄ + 1 and F < 2f

Lemma 7 Assume f < F < 2f , and let r = 2f − F . When summing n =
2k + 2 terms we can reach an error bound of 2r−1ulpf (S).

Proof. Let s1 = 1 + 2−k and si = −(1− 2−f)2−k for 2 ≤ i ≤ n. Then t2 = 1
with an error of 1

2
ulpF (t1), and the exponent of t3 is decreased by 1. With

Lemma 1, t3 is exact (no rounding error occurs at this step) and we can check
by induction that t3 through tn are exact.

Last value is tn = 1 − 2k(1 − 2−f)2−k = 2−f , with no rounding error when
putting it back to f bits, whereas the true sum is

1 + 2−k − (2k + 1)(1− 2−f)2−k = 2−k + 2−f − 2−k + 2−F

= 2−f + 2−F

10

and thus the error of 2−k−(−f+1)ulpf (S) = 2f−k−1ulpf (S) = 2r−1ulpf (S). 2

Here is an example for f = 7, F = 10, n = 2 + 23 = 10:

s1 = 1.001000
t1 = 1.001000000
s2 = − 0.0001111111
t2 = 1.000000000
s3 = − 0.0001111111
t3 = 0.1110000001
s4 = − 0.0001111111
t4 = 0.1100000010
s5 = − 0.0001111111
t5 = 0.1010000011
s6 = − 0.0001111111
t6 = 0.1000000100
s7 = − 0.0001111111
t7 = 0.01100001010
s8 = − 0.0001111111
t8 = 0.01000001100
s9 = − 0.0001111111
t9 = 0.001000011100

s10 = − 0.0001111111
t10 = 0.0000001000000000
S = 0.0000001000000

Correct Sum = 0.000000100100000000000

This constructed worst case achieves an error that is about half the error
predicted by [1], and Theorem 3 shows that the bound of 2r−1 is optimal.

Remark. This is the same example as in [1], Section 8.8.1. Section 8.8.2 gives
another example with n = n̄ + 1, F ≥ 2f and s2 unnormalized: however, here
again, the error is only 2r−1 ulps, and not 2r + 1

2
ulps.

Note: the second case from 8.8.3 is just the same as above, with another
summand sn+1 = −2−f that cancels the computed sum, while the true sum is
2−F .

4.3 Case (4): n ≥ n̄ + 2

Here is a generic example — from [1], multiplied by 2F — where the computed
sum is zero whereas the true sum is non zero for F < 2f : take s1 = 2F + 2f ,

11

sj = −2f +1 for 2 ≤ j ≤ n̄+1, and sn̄+2 = −2k. Since n̄ = 2k +1 in that case,
the true sum is 2F + 2f − (2k + 1)(2f − 1) − 2k = 1, whereas the computed
sum is 0. Indeed, we have t2 = 2F with a rounding error of 1, and then all
subsequent computations are exact.

5 Implementation

Algorithm 1 was written in C using the MPFR library[6]. In order to compute
error bounds the algorithm was first written straight from its definition in [1],
then some improvements were added:

• the “double rounding” error is avoided as described in section 2.2,
• the precision F is automatically initialized from the precision f of the inputs,
• the precision F is then increased until the relative error given by theorem

1 is small enough to give the correct rounding.

Figure 1 shows some benchmarks made on a 1.4 GHz computer. The sorting
algorithm used is heap sort and we don’t use the automatic increase of the F
parameter. We chose heap sort because it performed well – better than quick-
sort – and because we didn’t want to make assumptions about the number of
different exponents present in the inputs. Further ideas on how to reduce the
cost of the sorting by using for example a bucket sort may be found in [1].

6 Future Work

In this paper, we proposed an alternate proof of Demmel-Hida’s main result
about accurate summation [1]. This is a first step towards a formal proof
using a proof assistant like HOL, PVS or Coq. While simplifying that proof,
we improved some of the bounds given by Demmel and Hida (mainly in the
n = n̄ + 1 case). We also provide some examples that attain the new bounds,
giving evidence that those are optimal.

References

[1] Demmel, J., and Hida, Y. Accurate floating point summation. http://www.
cs.berkeley.edu/~demmel/AccurateSummation.ps, May 2002. 37 pages.

[2] Demmel, J., and Hida, Y. Fast and accurate floating point summation with
application to computational geometry, Jan. 2003. Submitted to Proceedings

12

HH
HHn

f
512 1024 2048 4096 8192 16384 32768 65536

512 46 42 35 20 6 3 1 0

0.19 0.22 0.30 0.66 2.34 4.52 9.09 17.51

1024 49 44 29 12 7 3 1 1

0.37 0.46 0.87 2.61 4.79 9.16 18.04 35.13

2048 50 36 20 12 7 4 2 1

0.77 1.42 3.16 5.52 9.85 18.45 36.16 69.09

4096 41 28 19 13 8 4 2 1

2.49 4.38 7.01 11.59 20.15 37.08 72.10 138.44

8192 35 27 20 13 8 4 2 1

6.89 10.03 15.05 23.89 40.83 74.75 145.07 279.39

16384 37 30 23 16 10 5 3 1

15.96 21.44 30.91 47.92 82.10 149.20 288.33 560.75

32768 47 40 32 23 15 9 5

33.67 43.97 62.98 96.59 163.97 298.63 576.36

65536 50 44 36 26 17 10

68.82 88.97 125.79 192.95 327.27 597.27

131072 52 45 37 28 18

139.46 176.76 256.02 388.63 650.90

262144 53 46 38 29

281.07 363.86 505.68 768.63

524288 53 47 39

566.59 727.5 1011.81

1048576 54 48

1139.77 1458.63

2097152 55

2270.90

Fig. 1. Percentage of the computing time spent in the sorting phase (first line of
each case) and total computing time in millisecond for several values of f (inputs
precision) and n (number of input floating point numbers).

of 10th GAMM-IMACS International Symposium on Scientific Computing,
Computer Arithmetic, and Validated Numerics (Scan 2002). 10 pages.

[3] IEEE standard for binary floating-point arithmetic. Tech. Rep. ANSI-IEEE
Standard 754-1985, New York, 1985. approved March 21, 1985: IEEE Standards
Board, approved July 26, 1985: American National Standards Institute, 18 pages.

[4] Kulisch, U., and Bohlender, G. Formalization and implementation of
floating-point matrix operations. Computing 16 (1976), 239–261.

[5] Priest, D. M. Algorithms for arbitrary precision floating point arithmetic. In
Proceedings of the 10th Symposium on Computer Arithmetic (Grenoble, France,
1991), P. Kornerup and D. Matula, Eds., IEEE Computer Society Press, pp. 132–
144.

[6] Spaces Project, INRIA. The MPFR Library http://www.mpfr.org/

13

