
A comparison of polynomial evaluation

schemes

L. Fousse a S. Schmitt b

aLORIA/INRIA Lorraine, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy
Cedex

bMPI für Informatik, 66123 Saarbrücken

Abstract

The goal of this paper is to analyze two polynomial evaluation schemes for mul-
tiple precision floating point arithmetic. Polynomials are used extensively in nu-
merical computations (Taylor series for mathematical functions, root finding) but a
rigorous bound of the error on the final result is seldom provided. We provide such
an estimate for the two schemes and find how to reduce the number of operations
required at run-time by a dynamic error analysis. This work is useful for floating
point polynomial arithmetic.

Key words: polynomial evaluation, bounded error

1 Goal and motivations

The goal is to compare two polynomial evaluation schemes. We want to com-
pute the sum:

P (x) =
l
∑

i=0

aix
i

and provide an error bound on the final result with respect to the number of
summands l + 1 and the precision F used for the intermediate results (the
”internal” precision).

Email addresses: laurent@komite.net (L. Fousse), sschmitt@mpi-sb.mpg.de
(S. Schmitt).
1 Supported by the Marie-Curie Training Site programme of the EU.

Preprint submitted to Real Numbers and Computers’6 7 September 2005

We make the following assumptions:

• |x| ≤ 2−k with k ≥ 1;
• |ai| ≤ |a0| = 1;
• the final result is rounded to f bits with f < F : f is the precision expected

by the user on the final result;
• during the computation, inputs as well as intermediate results are not de-

normalized numbers.

These conditions are not as restrictive as one might think first. Fast and
accurate polynomial evaluation is needed in mathematical libraries for the
elementary functions [4] (log, exp, cos, . . .). In this context, there is first an
argument reduction based on the properties of the function to evaluate. The
goal is to have x in an interval as small as possible in which the polynomial
approximation of the function is good. A typical value for k would be 5 in this
case. The second hypothesis is needed to avoid cancellation to zero where no
meaningful result on the final error can be given, and is actually often verified
by Taylor expansions of elementary functions or minimax approximations.

In [1] such an evaluation scheme based on argument reduction and polynomial
evaluation with increased precision is given for the exponential function for
example.

First we present the algorithm used for each evaluation method. A bound
on the error on the final result is then computed for each algorithm, and,
following a discussion on how this evaluation can be made easier at runtime,
actual error and time measurements are provided.

Throughout the paper we let ǫ = 2−F the machine epsilon for F -digit floating
point numbers, i.e. the relative difference between two consecutive normalized
floating point numbers.

For a non-zero real number x we define the exponent E(x) := 1 + ⌊log2 |x|⌋,
such that 2E(x)−1 ≤ |x| < 2E(x). We further define ulpF (x) = 2E(x)−F . When x

is a floating point number with a mantissa of F bits, ulpF (x) corresponds to
the weight of the last mantissa bit.

2 Schemes

There are two well-known polynomial schemes.

Basic Scheme We compute P (x) in increasing power order. At each step,
yi is an approximation of xi and zi of aix

i. Then tl is an approximation of
P (x). More precisely, the algorithm used is the following:

2

t0 ← a0

y0 ← 1
for i← 1 to l

yi ← ◦(yi−1x)
zi ← ◦(yiai)
ti ← ◦(ti−1 + zi)

Horner Scheme We compute P (x) with the classical Horner method. Here,
s0 is an approximation of P (x).

sl ← al

for i← l − 1 downto 0
si ← ai + xsi+1

3 Error estimate

3.1 Basic scheme

We estimate the error of the basic method εfin =

∣

∣

∣

∣

∣

tl −
l
∑

i=0
aix

i

∣

∣

∣

∣

∣

. To do this we

introduce the following two sources of error:

• the error of the computation of zi at each step. We call that the evaluation

error and its value is

εeval =

∣

∣

∣

∣

∣

l
∑

i=0

(aix
i − zi)

∣

∣

∣

∣

∣

.

Here we define z0 = a0.
• the summation error. This is the error that is caused by the rounding in the

addition at each step, and its value is

εadd =

∣

∣

∣

∣

∣

tl −
l
∑

i=0

zi

∣

∣

∣

∣

∣

.

Then εfin ≤ εeval + εadd.

3.1.1 The evaluation error

The value yi is the result of i multiplications

yi = xi
i
∏

j=1

(1 + θj).

3

As zi = ◦(yiai), we get for zi

zi = ai · x
i(1 + θ′i)

i
∏

j=1

(1 + θj).

The relative error at step i is given by

|zi − ai · x
i|

|aixi|
≤

∣

∣

∣

∣

∣

∣

1− (1 + θ′i)
i
∏

j=1

(1 + θj)

∣

∣

∣

∣

∣

∣

.

Assuming rounding is to nearest, we know that

∀ j ∈ {1, . . . , l}, |θj | ≤ 2−F = ǫ and ∀ i ∈ {1, . . . , l}, |θ′i| ≤ 2−F = ǫ.

Lemma 1 Let θj for j = 1, . . . , i be given such that
∑i

j=1 |θj| ≤
1
2
. Then

1−
i
∑

j=1

|θj| ≤
i
∏

j=1

(1 + θj) ≤ 1 + 2
i
∑

j=1

|θj |.

PROOF. By induction on i. 2

As y0 = 1 we know that θ1 = 0 (hence y1 = x). Then, for i ≤ 2F−1, the
hypothesis of the lemma is fulfilled:

|θ′i|+
i
∑

j=2

|θj| ≤
i
∑

j=1

2−F = i2−F ≤
1

2
⇔ i ≤ 2F−1.

We get the following relative error bound on zi:

|zi − ai · x
i|

|aixi|
≤ 2i2−F = i21−F if i ≤ 2F−1.

We will therefore assume that l ≤ 2F−1. The evaluation error can then be
bounded the following way :

εeval≤
l
∑

i=1

i21−F |aix
i| ≤ 21−F

l
∑

i=1

i2−ki

≤ 21−F
∞
∑

i=1

i2−ki =
21−k−F

(1− 2−k)2

≤ 23−k−F .

4

3.1.2 The summation error

The summation error

εadd =

∣

∣

∣

∣

∣

∣

tl −
l
∑

j=0

zj

∣

∣

∣

∣

∣

∣

is naively bounded by εadd = 1
2

l
∑

i=1
ulpF (ti) since rounding is to nearest. A

better bound can be given if for example the exponents of the summands
decrease after the first error (which can be easily detected at run time), see
[2].

3.1.3 The final error

Since the summation error is given relative to the ulp of the current sum at
each step, we need to know how the ulp (or the exponent) of this sum changes
in the computation. This is necessary as well to get a relative error at the end.

Each time the exponent of the current sum decreases, the relative error accu-
mulated so far is multiplied by 2 (the basis of the computation), so we don’t
want to let this exponent decrease too much. For that we need an upper bound
of the zi.

We assume that we still use rounding to nearest. Then

|zi| ≤ |aix
i|(1 + i21−F)

≤ 2−ki(1 + i21−F)

= 2F−ki−1(1 + i21−F)ulpF (t0).

Let i0 be the first index at which the exponent of ti decreases (it can grow
before), i.e.:

E(ti0) < E(ti0−1) and ∀ j ∈ {0, . . . , i0 − 1}, E(tj) ≥ E(tj−1)

and let i0 = l+1 if there is no decrease in exponent. Then we have ulpF (ti0−1) =
2αulpF (t0) with α ≥ 0.

Lemma 2 Let F ≥ 5 and p ≤ 2F−3. We further assume that ki0 + α ≥ 3.
Then ∀j ∈ {i0, . . . , i0 + p},

ulpF (ti0) =
ulpF (ti0−1)

2
≤ ulpF (tj) ≤ ulpF (ti0−1).

5

PROOF. The proof is done by induction on j. First we show that

ulpF (ti0−1)

2
= ulpF (ti0) < ulpF (ti0−1).

From the definition of ti0 the last inequality follows directly. For the first
equality it suffices to show that

ulpF (ti0) ≥
ulpF (ti0−1)

2
.

We first estimate |ti0|.

|ti0−1 + zi0 | ≥ |ti0−1| − |zi0 |

≥
(

2F−1 − 2F−ki0−1−α(1 + i02
1−F)

)

ulpF (ti0−1)

≥ 2F−2ulpF (ti0−1).

To show the last inequality we need to show

2F−ki0−1−α(1 + i02
1−F) ≤ 2F−2.

From the assumption it follows that ki0 + α ≥ 2. Hence

2F−ki0−1−α(1 + i02
1−F) ≤ 2F−3 + i02

−ki0 ≤ 2F−3 +
1

2
≤ 2F−2

as F ≥ 2. Since ti0 = ◦F (ti0−1 +zi0) we know that after rounding the condition
will still hold.

We now get

ulpF (ti0) = 2E(ti0)−F > 2−F |ti0 | ≥ 2−2ulpF (ti0−1)

and because of the strict inequality it follows that

ulpF (ti0) ≥
ulpF (ti0−1)

2
.

We now assume the property holds for j ∈ {i0, . . . , i0 + p− 1} and first show
the inequality

ulpF (ti0+p) ≥
ulpF (ti0−1)

2
.

To do this, we estimate |ti0+p| similarly as above.

|ti0+p−1 + zi0+p| ≥ |ti0−1| −
i0+p
∑

j=i0

|zj | −
i0+p−1
∑

j=i0

1

2
ulpF (tj)

6

≥



2F−1 −
i0+p
∑

j=i0

2F−kj−1−α(1 + j21−F)−
p

2



 ulpF (ti0−1)

≥ 2F−2ulpF (ti0−1).

We have to show the last inequality. If we extend the sum to infinity we get
the following bound (using ki0 + α ≥ 3)

i0+p
∑

j=i0

2F−kj−1−α(1 + j21−F) +
p

2

≤
∞
∑

j=i0

2F−1−kj−α +
∞
∑

j=i0

j2−kj−α +
p

2

≤
2F−1−ki0−α

1− 2−k
+ 2−ki0−α

∞
∑

j=0

(j + i0)2
−kj +

p

2

=
2F−1−ki0−α

1− 2−k
+ 2−ki0−α 2−k

(1− 2−k)2
+ i02

−ki0−α 1

1− 2−k
+

p

2

≤
2F−4

1
2

+ 2−3 2−1

1
4

+ i02
−i0

1
1
2

+
p

2

≤ 2F−3 +
1

4
+ 1 +

p

2
≤ 2F−2.

For the last inequality we use F ≥ 5 and hence 2F−4 ≥ 2. Further, we use
p ≤ 2F−3, and hence p

2
≤ 2F−4.

As for the case j = i0 we can see that after rounding, |ti0+p| ≥ 2F−2ulpF (ti0−1).

As before, it follows that ulpF (ti0+p) ≥
ulpF (ti0−1)

2
.

Now we consider the other inequality

ulpF (ti0+p) ≤ ulpF (ti0−1).

Again we estimate |ti0+p|.

|ti0+p−1 + zi0+p|

≤ |ti0 |+
i0+p
∑

j=i0+1

|zj|+
i0+p−1
∑

j=i0+1

1

2
ulpF (tj)

≤



2F−1 −
1

2
+

i0+p
∑

j=i0+1

2F−kj−1−α(1 + j21−F) +
p− 1

2



 ulpF (ti0−1).

7

For the last inequality we need

|ti0 | ≤ (2F − 1)ulpF (ti0) =
(

2F−1 −
1

2

)

ulpF (ti0−1).

We need to show that

i0+p
∑

j=i0+1

2F−kj−1−α(1 + j21−F) +
p

2
≤ 2F−1

which is trivial with what we’ve already proved for the other inequality. It
follows that |ti0+p−1 + zi0+p| ≤ (2F − 1

2
)ulpF (ti0−1). Rounding leads to the

same estimate for |ti0+p|:

|ti0+p| ≤
(

2F −
1

2

)

ulpF (ti0−1) < 2FulpF (ti0−1).

Then
ulpF (ti0+p) ≤ 2−F+1|ti0+p| < 2ulpF (ti0−1)

and hence ulpF (ti0+p) ≤ ulpF (ti0−1). 2

Note that for ki0 + α = 2 the lemma is still true, but we need to be more
careful with the estimates.

As p ≤ l ≤ 2F−1, we know that the exponent of the final result is at least
one less that the highest exponent of the partial sums. The final error on tl is
then:

εfin≤ εeval + εadd

≤ 23−k−F +
l

2
ulpF (ti0−1)

=

(

22−k−α +
l

2

)

ulpF (ti0−1)

≤ (23−k−α + l)ulpF (tl).

Here we used
ulpF (ti0−1) = 2αulpF (t0) = 2α+1−F .

3.2 Improvement of the basic method

From the error bound we see that the final error mostly comes from the round-
ing error at each step and not from the evaluation error. In order to decrease
the evaluation cost it could be meaningful to use a reduced precision for the zi.

8

����
����
����
����

��������
��������
��������
��������

t0

z1

z2

1

1

1 1

1

1

1

1

1

0 0 0 0 0 0 0

0 0 0 0 0 0

0000

0 0 00

Fig. 1. Decreasing ulp of zi.

This idea appears already in [5] for summing a series with decreasing terms.
A gain of a factor of up to three is given in [5] for the summation time; a
detailed error analysis is however not provided.

3.2.1 The evaluation error

As the value of zi decreases by an order of 2−k compared to the value of zi−1,
the first idea is to use only F −ki bits of precision to compute zi. For example
Figure 1 shows how the ulp of the zi decreases for k = 2 and |ai| = 1 (the
dashed boxes are the neglected bits in this improved method).

The relative error is now :

zi = aix
i(1 + θ′i)

i
∏

j=1

(1 + θj)

with ∀i ∈ {1, . . . , l}, |θ′i| ≤ 2ki−F and ∀j ∈ {1, . . . , i}, |θj| ≤ 2kj−F .

To apply Lemma 1, we need F ≥ ki + 3. Then

|θ′i|+
i
∑

j=1

|θj | ≤ 2ki−F +
i
∑

j=1

2kj−F = 2ki−F +
2k

2k − 1
2−F (2ki−1) ≤ 3 ·2ki−F ≤

1

2
.

(Note that we don’t use θ1 = 0 here, which does not improve the estimates.)
Using the lemma and the assumptions on |θ′i|, |θi|, we get the two inequalities

1− 2ki−F −
i
∑

j=1

2kj−F ≤ (1 + θ′i)
i
∏

j=1

(1 + θj) ≤ 1 + 2



2ki−F +
i
∑

j=1

2kj−F



 .

The relative error at each step is given by

|zi − aix
i|

|aixi|
=

∣

∣

∣

∣

∣

∣

1− (1 + θ′i)
i
∏

j=1

(1 + θj)

∣

∣

∣

∣

∣

∣

≤ 2−F e(i)

with

e(i) = 2



2ki +
i
∑

j=1

2kj



 = 2

(

2ki +
2k

2k − 1
(2ki − 1)

)

.

9

The following estimate (for F ≥ ki + 3 for i = 1, . . . , l) is useful.

2−kie(i) = 2

(

1 +
2k

2k − 1
(1− 2−ki)

)

≤ 2(1 + 2) = 6.

The evaluation error is then bounded by

εeval ≤
l
∑

i=1

2−Fe(i)|aix
i| ≤ 2−F

l
∑

i=1

e(i)2−ki ≤ 6l2−F .

3.2.2 The final error

To get a similar bound as before on the final error, we need to compare the
ulp of the final result with the accumulated error. Again we assume rounding
to nearest. Then

|zi| ≤ |aix
i|(1 + 2−Fe(i))

≤ 2−ki(1 + 2−Fe(i))

≤ 2F−ki−1(1 + 2−Fe(i))ulpF (t0).

Using F ≥ ki + 3 for all i, we can further estimate 2−F ≤ 2−ki−3 and

|zi| ≤ 2F−ki−1
(

1 +
6

8

)

ulpF (t0) ≤ 2F−kiulpF (t0).

Let i0 as before be the first index at which the exponent of ti decreases (i0 =
l + 1 if there is no decrease). Also let α ≥ 0 with ulpF (ti0−1) = 2αulpF (t0).
The next lemma is similar to Lemma 2.

Lemma 3 Let p ≤ 2F−2 and F ≥ kl+3. We further assume that ki0 +α ≥ 4.
Then ∀j ∈ {i0, . . . , i0 + p},

ulpF (ti0) =
ulpF (ti0−1)

2
≤ ulpF (tj) ≤ ulpF (ti0−1).

PROOF. The proof is exactly the same as the proof of Lemma 2, using the
estimates from above. 2

We can now estimate the partial sum exponent as before and get the final
error

εfin ≤ εeval + εadd ≤ 7l ulpF (tl).

10

3.3 Horner scheme

The ideas of the error estimate for the Horner method are taken from [3].
Looking at the relative error, in step i we have si = (ai+(x·si+1)(1+θi))(1+θ′i)
with |θi|, |θ

′
i| ≤ 2−F . The general formula is then

s0 =
l
∑

i=0

(1 + θ′i)





i−1
∏

j=0

(1 + θj)(1 + θ′j)



 aix
i.

Defining

δi := (1 + θ′i)





i−1
∏

j=0

(1 + θj)(1 + θ′j)



− 1,

we can write

s0 =
l
∑

i=0

(1 + δi)aix
i.

We then can estimate the difference between s0 and P (x):

|s0 − P (x)| =

∣

∣

∣

∣

∣

l
∑

i=0

(1 + δi)aix
i −

l
∑

i=0

aix
i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

l
∑

i=0

δiaix
i

∣

∣

∣

∣

∣

≤
l
∑

i=0

|δi||ai||x|
i.

Now we need a bound for |δi|. Using Lemma 1, we get

1− (2i + 1)2−F ≤ δi + 1 = (1 + θ′i)





i−1
∏

j=0

(1 + θj)(1 + θ′j)



 ≤ 1 + 2(2i + 1)2−F

as long as 2i + 1 ≤ 2F−1. Therefore, for l ≤ 2F−2 − 1
2
, we get the estimate for

all i = 0, . . . , l:
|δi| ≤ 2(2i + 1)2−F = (2i + 1)21−F .

The error estimate for the Horner scheme is then

|s0 − P (x)| ≤
l
∑

i=0

(2i + 1)21−F |ai||x|
i.

Using |ai| ≤ 1 and |x| ≤ 2−k we can further estimate

|s0 − P (x)| ≤ 21−F
l
∑

i=0

(2i + 1)2−ik ≤ 21−F 1 + 2−k

(1− 2−k)2
.

The last inequality is obtained by extending the sum to infinity. The goal is
to get a lower bound of |s0| so we can bound the relative error.

|P (x)| ≥ 1−
l
∑

i=1

|aix
i| ≥ 1−

l
∑

i=1

2−ki = 1− 2−k 1− 2−kl

1− 2−k
.

11

We need to distinguish two cases here:

• If k ≥ 2, we get

|P (x)| ≥ 1− 2−k 1

1− 2−k
≥

2

3
.

Using the estimate from above we get the lower bound of |s0|:

|s0| ≥
2

3
− 21−F 1 + 2−k

(1− 2−k)2
=

2

3
·
(1− 2−k)2 − 3 · 2−F (1 + 2−k)

(1− 2−k)2
.

And the relative error is then bounded by :

ǫrel =
|s0 − P (x)|

|s0|
≤

3 · 2−F (1 + 2−k)

(1− 2−k)2 − 3 · 2−F (1 + 2−k)
.

The worst case is k = 2 which gives ǫrel ≤
5·2−F

3

4
−5·2−F

. For example with F ≥ 6

this means we will lose at most 3 bits of precision in the final result 2 .
• k = 1. We get |P (x)| ≥ 2−l. The lower bound of s0 is then |s0| ≥ 2−l−12·2−F

which is only meaningful if F ≥ l + 4. The relative error is then

ǫerr ≤
12 · 2−F

2−l − 12 · 2−F
.

For example for F = 53 and l = 10 we estimate that we can lose up to 14 bits
in the final result. This estimate is quite bad but this comes from the static
lower bound for P (x) and s0. At run time the final value of s0 is known and
a better error estimate can almost always be given.

3.4 Improvement of the Horner scheme

Similar to the basic method, we estimate the errors after cutting the number
of bits in the internal representation. We start the computation with low
accuracy and increase the size of the partial result at each step. Here we have
the relative errors |θ′i| ≤ 2ki−F and θi ≤ 2ki−F for i = 0, . . . , l. Again we define

δi := (1 + θ′i)





i−1
∏

j=0

(1 + θj)(1 + θ′j)



− 1.

To apply Lemma 1, we need the inequality

2ki−F + 2
i−1
∑

k=0

2kj−F ≤
1

2
.

2
ǫ = 2−6.

12

This is satisfied for F ≥ ki + 3:

2ki−F + 2
i−1
∑

k=0

2kj−F = 2−F

(

2ki +
2

2k − 1
(2ki − 1)

)

≤ 2−F
(

2ki + 2 · 2ki
)

= 3 · 2ki−F ≤
1

2
.

Now we can give a bound for |δi|. Using Lemma 1, we get

1− 2−F

(

2ki + 2
i−1
∑

k=0

2kj

)

≤ δi + 1 ≤ 1 + 2 · 2−F

(

2ki + 2
i−1
∑

k=0

2kj

)

as long as F ≥ ki + 3. We write

e(i) = 2

(

2ki + 2
i−1
∑

k=0

2kj

)

= 2
(

2ki +
2

2k − 1
(2ki − 1)

)

and get, for F ≥ kl + 3, the estimate for all i = 0, . . . , l:

|δi| ≤ 2−Fe(i).

We later need the estimate

2−kie(i) = 2
(

1 +
2

2k − 1
(1− 2−ki)

)

≤ 6.

Now we can estimate the difference between s0 and P (x):

|s0 − P (x)| =

∣

∣

∣

∣

∣

l
∑

i=0

δiaix
i

∣

∣

∣

∣

∣

≤
l
∑

i=0

2−Fe(i)|ai||x|
i.

Using |ai| ≤ 1 and |x| ≤ 2−k we can further estimate

|s0 − P (x)| ≤ 2−F
l
∑

i=0

2−ike(i) ≤ 6 · 2−F (l + 1).

We can use the same lower bound for |P (x)| as above:

|P (x)| ≥ 1− 2−k 1− 2−kl

1− 2−k
.

We need to distinguish two cases here:

• If k ≥ 2, we get

|P (x)| ≥
2

3
.

13

Using the estimate from above we get the lower bound of |s0|:

|s0| ≥
2

3
− 6 · 2−F (l + 1).

(For the right hand side to be positive we need 2−F (l+1) ≤ 1
9
.) The relative

error is then bounded by :

ǫrel =
|s0 − P (x)|

|s0|
≤

6 · 2−F (l + 1)
2
3
− 6 · 2−F (l + 1)

.

• k = 1. We get |P (x)| ≥ 2−l. The lower bound of s0 is then |s0| ≥ 2−l − 6 ·
2−F (l+1). (The right hand side is positive for example for F ≥ 2l+3.) The
relative error is then

ǫerr ≤
6 · 2−F (l + 1)

2−l − 6 · 2−F (l + 1)
.

4 Providing a dynamic error bound

Dynamic error bounds are bounds that can be deduced from the partial results,
as opposed to static bounds which are estimated before the actual computa-
tion.

The static error bounds we provided are good to have an idea of the maximum
error these algorithms can yield in the worst case (although we don’t provide
examples showing that these bounds are optimal).

However, the static analysis shows its limits when we want to give an error
bound that is relative to the final result. The lower bound of the final result
is rather pessimistic and is not relevant at run-time since we know the final
result. This is confirmed by our experiments where the static error is worse by a
factor of two. The algorithms were therefore written to provide the evaluation
of P (x) and a bound on the final error at the same time so that we know how
many bits are significant.

For the Horner and improved Horner schemes nothing needs to be done, we
only have to compare the value of the error given by the static analysis with
the value of the final result.

For the basic and improved basic methods, we compute the maximum of the
exponents of the intermediate results ti. We know that this exponent is the
exponent of ti0−1 and can then compute α (see section 3). We also know
whether the exponent of tl is that of ti0 or of ti0−1 and we don’t overestimate
the error too much.

14

5 Conclusion and future work

In this paper we presented and analyzed two polynomial evaluation schemes
and improved them. The results confirm the reputation of the Horner method
having more numerical stability.

For large inputs, the improved methods are faster than the original methods.
This gain was predictable from the theoretical complexity: depending on the
time complexity of the multiplication, the truncated basic method gains a
factor ranging from 2 to 3 on the time spent doing multiplications compared
to the basic method. The actual error of the improved methods is compara-
ble to the error of the original methods. It is therefore not straightforward
which method to chose as there is a trade-off between very good accuracy
and good efficiency 3 (Horner) and not so good accuracy but even higher effi-
ciency (improved Horner method in the last experiment). The choice is highly
context-dependent.

As a future work, Smith gives in [5] a method to sum series where the terms
are “related”. In our tests the coefficient were precomputed once but we could
apply our error analysis to Smith’s “concurrent series” summing to get an
efficient method to sum such series with bounded error.

References

[1] David Defour, Florent de Dinechin, and Jean-Michel Muller. Correctly rounded
exponential function in double precision arithmetic. In Proceedings of SPIE 46th
Annual Meeting, International Symposium on Optical Science and Technology,
San Diego, USA, 2001.

[2] Demmel J. and Hida Y. Accurate floating-point summation, 2002. http://www.
cs.berkeley.edu/~yozo/papers/csd-02-1180.ps.gz.

[3] D. Manocha. Error analysis for polynomial evaluation. http://www.cs.unc.

edu/~smp/COMP205/LECTURES/ERROR/lec4.ps.

[4] Jean-Michel Muller. Elementary Functions. Algorithms and Implementation.
Birkhauser, 1997. 232 pages.

[5] David M. Smith. Algorithm 693. a Fortran package for floating-point multiple-
precision arithmetic. ACM Transactions on Mathematical Software, 17(2):273–
283, 1991.

[6] INRIA. Spaces Project. The MPFR library. http://www.mpfr.org/.

3 We’re interested in the time efficiency.

15

A Experiments

The different algorithms were written with the MPFR [6] floating-point library
and ran on a P4 processor at 3GHz, taking the l first term of the exponential
series for P , with several values of the different parameters. The values of l

were chosen so that every term zi in the basic method is greater than the
ulp of the current result (no term is completely useless). The polynomials are
computed by evaluating the first terms of the exponential series in sequence
and rounding each term to the current precision f . The error is computed with
respect to the correct value, that is the value computed with infinite precision.
The tables show the runtime, the predicted accuracy and the actual accuracy.
Each method is run with F as the working precision and returns the final
result on F bits. The errors are given in ulp of the final result.

We took x = ◦(1√
42

) rounded to f bits.

F = 53, f = 40, l = 11

Method measured error dynamic error static error Time(µs)

basic 1.063269 6.5 13 5.646

basic improved 1.063269 3.85e1 77 10.834

Horner 0.063269 2.22 4.44 4.234

Horner improved 0.063269 3.60e1 7.20e1 9.918

F = 410, f = 400, l = 57

Method measured error dynamic error static error Time(ms)

basic 0.100492 2.95e1 59 0.135

basic improved 0.100492 2.00e2 3.99e2 0.149

Horner 0.100492 2.22 4.44 0.071

Horner improved 0.100492 1.74e2 3.48e2 0.099

F = 4010, f = 4000, l = 404

16

Method measured error dynamic error static error Time(ms)

basic 1.672861 2.03e2 4.06e2 39.375

basic improved 1.672861 1.41e3 2.83e3 39.062

Horner 0.327139 2.22 4.44 20.156

Horner improved 0.672861 1.22e3 2.44e3 17.812

One test with x = ◦(1√
4200

) which verifies k = 6 :

F = 4010, f = 4000, l = 311

Method measured error dynamic error static error Time(ms)

basic 6.589485 1.56e2 3.12e2 30.469

basic improved 6.589485 1.09e3 2.18e3 25.312

Horner 0.410515 1.05 2.10 15.469

Horner improved 0.410515 9.36e2 1.87e3 10.781

From the results we see that no method ever underestimated the actual error
it did but rather provided safe error bounds usually by several orders of mag-
nitude larger than the measured error in the case of the first two methods.
When computing the static error, the ulp of the final result is usually under-
estimated by one, which explains the factor of two between the static and the
dynamic errors.

The basic and basic improved methods achieve the same accuracy in our tests
confirming the intuition that computing too many bits for the higher terms of
the series is inefficient. The improved method is worse than the basic method
for small inputs because we lose more time evaluating the error and rounding
the partial result than actually computing the evaluation.

The Horner method has always the best accuracy (measured and predicted)
but it not always as efficient as the truncated (improved) methods.

The same experiments were done with the cosine series but were not included
as the results are similar.

17

